膜片钳基本参数
  • 品牌
  • Patch Clamp
  • 型号
  • 型号齐全
膜片钳企业商机

1976年德国马普生物物理化学研究所Neher和Sakmann在青蛙肌细胞上记录记录到AChjihuo的单通道离子电流1980年Sigworth等用负压吸引,得到10-100GΩ的高阻封接(Giga-sea1),降低了记录时的噪声1981年Hamill和Neher等引进了膜片游离技术和全细胞记录技术1983年10月,《Single-ChannelRecording》一书问世,奠定了膜片钳技术的里程碑。膜片钳技术原理膜片钳技术是用玻璃微电极接触细胞,形成吉欧姆(GΩ)阻抗,使得与电极前列开口处相接的细胞膜的膜片与周围在电学上绝缘,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)进行监测记录的方法。全自动膜片钳技术采用的标本必须是悬浮细胞,像脑片这类标本无法采用。进口单电极膜片钳电流钳制

进口单电极膜片钳电流钳制,膜片钳

这一设计模式似乎几十年都没有改变过,作为一个有着近20年膜片钳经验的科研工作者,记得自己进入实验室次看到的放大器就差不多是这样,也不觉得还会有什么变化。直到笔者在19年访问欧洲的一个同样做电生理的实验室的时候,发现了这样一款独特的放大器,让笔者眼前一亮,这款放大器从前置放大器出来的线竟然就直接连接在了电脑上,当笔者问他们放大器和数模呢?他们说,你看到的就是全部了,所以的部件都包含在了这个前置放大器中。美国膜片钳细胞功能特性膜电位Vm由高输入阻抗的电压跟随器所测量。

进口单电极膜片钳电流钳制,膜片钳

膜片钳技术发展历史:1976年德国马普生物物理化学研究所Neher和Sakmann在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh启动的单通道离子电流,从而产生了膜片钳技术。1980年Sigworth等在记录电极内施加5-50cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),明显降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。1983年10月,《Single-ChannelRecording》一书问世,奠定了膜片钳技术的里程碑。Sakmann和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。

膜片钳在通道研究中的重要作用用膜片钳技术可以直接观察和分辨单离子通道电流及其开闭时程、区分离子通道的离子选择性、同时可发现新的离子通道及亚型,并能在记录单细胞电流和全细胞电流的基础上进一步计算出细胞膜上的通道数和开放概率,还可以用以研究某些胞内或胞外物质对离子通道开闭及通道电流的影响等。同时用于研究细胞信号的跨膜转导和细胞分泌机制。结合分子克隆和定点突变技术,膜片钳技术可用于离子通道分子结构与生物学功能关系的研究。利用膜片钳技术还可以用于药物在其靶受体上作用位点的分析。如神经元烟碱受体为配体门控性离子通道,膜片钳全细胞记录技术通过记录烟碱诱发电流,可直观地反映出神经元烟碱受体活动的全过程,包括受体与其激动剂和拮抗剂的亲和力,离子通道开放、关闭的动力学特征及受体的失敏等活动。使用膜片钳全细胞记录技术观察拮抗剂对烟碱受体激动剂量效曲线的影响,来确定其作用的动力学特征。然后根据分析拮抗剂对受体失敏的影响,拮抗剂的作用是否有电压依赖性、使用依赖性等特点,可从功能上区分拮抗剂在烟碱受体上的不同作用位点,即判断拮抗剂是作用在受体的激动剂识别位点,离子通道抑或是其它的变构位点上。全细胞膜片钳记录是应用较早,也是普遍的钳位技术。

进口单电极膜片钳电流钳制,膜片钳

离子通道结构研究∶目前,绝大多数离子通道的一级结构得到了阐明但根本的还是要搞清楚各种离子通道的三维结构,在这方面,美国的二位科学家彼得·阿格雷和罗德里克麦金农做出了一些开创性的工作,他们到用X光绕射方法得到了K离子通道的三维结构,二位因此获得2003年诺贝系化学奖。有关离子通道结构不是本PPT的重点,可参考杨宝峰的<离子通道药理学>和Hill的<lonicChannelsOfExcitableMembranes》。对离子通道功能的研究,主要采用记录离子通道电流来间接反映离子通道功能,目前有如下两种技术:电压钳技术(VoltageClamp),膜片钳(patchclamp)技术。Eberwine等于1991年首先将膜片钳技术与RT-PCR技术结合起来运用。日本双电极膜片钳解决方案

对离子通道功能的研究,主要采用记录离子通道电流来间接反映离子通道功能。进口单电极膜片钳电流钳制

光遗传学调控技术是近几年正在迅速发展的一项整合了光学、基因操作技术、电生理等多学科交叉的生物技术。NatureMethods杂志将此技术评为"Methodoftheyear2010"[19];美国麻省理工学院科技评述(MITTechnologyReview,2010)在其总结性文章"Theyearinbiomedicine"中指出:光遗传学调控技术现已经迅速成为生命科学,特别是神经和心脏研究领域中热门的研究方向之一。目前这一技术正在被全球几百家从事心脏学、神经科学和神经工程研究的实验室使用,帮助科学家们深入理解大脑的功能,进而为深刻认识神经、精神疾病、心血管疾病的发病机理并研发针对疾病干预和的新技术。进口单电极膜片钳电流钳制

因斯蔻浦(上海)生物科技有限公司是以提供nVista,nVoke,3D bioplotte,invivo为主的有限责任公司(自然),滔博生物是我国仪器仪表技术的研究和标准制定的重要参与者和贡献者。滔博生物以nVista,nVoke,3D bioplotte,invivo为主业,服务于仪器仪表等领域,为全国客户提供先进nVista,nVoke,3D bioplotte,invivo。产品已销往多个国家和地区,被国内外众多企业和客户所认可。

与膜片钳相关的**
信息来源于互联网 本站不为信息真实性负责