多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

细胞在受到外界刺激时,随着刺激时间的增长,即使刺激继续存在,Ca2+荧光信号不但不会继续增强,反而会减弱,直至恢复到未加刺激物时的水平。对于细胞受精过程中Ca2+荧光信号的变化情况,研究发现,配了在粘着过程中,Ca2+荧光信号未发生任何变化,而配子之间发生融合作用时,Ca2+荧光信号强度却会出现一个不稳定的峰值,并可持续几分钟。这些现象,对研究受精发育的早期信号及Ca2+在卵细胞和受精卵的发育过程中的作用具有重要的意义。在其它一些生理过程如细胞分裂、胞吐作用等,Ca2+荧光信号强度也会发生很强的变化。多光子显微镜作为一种研究微观结构和功能的技术,在众多领域得到了普遍的应用。多光子显微镜成像深度

多光子显微镜成像深度,多光子显微镜

    现代分子生物学技术的迅速发展和科技的进步,特别是随着后基因组时代的到来,人们已经能够根据需要建立各种细胞模型,为在体研究基因表达规律、分子间的相互作用、细胞的增殖、细胞信号转导、诱导分化、细胞凋亡以及新的血管生成等提供了良好的生物学条件。然而,尽管人们利用现有的分子生物学方法,已经对基因表达和蛋白质之间的相互作用进行了深入、细致的研究,但仍然不能实现对蛋白质和基因活动的实时、动态监测。在细胞的生理过程中,基因、尤其是蛋白质的表达、修饰和相万作用往往发生可逆的、动态的变化。目前的分子生物学方法还不能捕获到蛋白质和基因的这些变化,但获取这些信息对与研究基因的表达和蛋白质之间的相互作用又至关重要。因此,发展能用于、动态、实时、连续监测蛋白质和基因活动的方法非常必要。 多光子显微镜成像深度显微镜简史:从光到多光子显微镜。

多光子显微镜成像深度,多光子显微镜

1,光源、光路高度整合通过精密的设计,将飞秒激光器、扫描振镜、PMT、滤光片组,甚至是单光子荧光光路全套整合在一个不大的扫描头(ScanHead)内,无论扫描头如何移动,扫描头内的光路都可以保持稳定不变,从而实现了超稳定、免维护的特点。2,配合多维度、高精度机械控制系统。扫描头直接架设在一个多维运动的机械装置上,可沿任意方向和角度移动扫描头,方便对动物样本进行多方位的扫描观察。而这在常规方案的多光子显微镜上有很大的实现难度,不但需要多个关节组合的光路导向机构,并且在这些关节旋转的时候,都冒着极大的光路偏移的风险,以至于在使用一段时间后都需要对光路进行再次校准,而这样的问题在我司上则完全不会发生。3.一机多能。

根据阿贝成像原理,许多光学成像系统是一个低通滤波器,物平面包含从低频到高频的信息,透镜口径会限制高频信息通过,只允许一定的低频通过,因此丢失了高频信息会使成像所得图像的细节变模糊,降低分辨率。对于三维成像来说,宽场照明时得到的信息不仅包含物镜焦平面上样品的部分信息,同时还包含焦平面外的样品信息。由于受到焦平面外的信息干扰,常规荧光显微镜无法获得层析图像。三维结构光照明显微镜能够提高分辨率、获得层析图像,是因为利用特定结构的照明光能引入样品的高频信息,当结构光的空间频率足够高时,只有靠近焦面的部分才能被结构光调制,超出这一区域,逐渐转变为均匀照明,也就是只有焦面附近的有限区域具有相对完整的频谱信息,离焦后,高频信息迅速衰减,所以使用高频结构光照明可以区分焦面和离焦区域来获得层析图像。然后再通过轴向扫描可以获取样品不同深度的焦面图像,重建样品的三维结构。多光子显微镜销售渠道分析及建议。

多光子显微镜成像深度,多光子显微镜

    对于双光子(2P)成像而言,离焦和近表面荧光激发是两个比较大的深度限制因素,而对于三光子(3P)成像这两个问题大大减小,但是三光子成像由于荧光团的吸收截面比2P要小得多,所以需要更高数量级的脉冲能量才能获得与2P激发的相同强度的荧光信号。功能性3P显微镜比结构性3P显微镜的要求更高,它需要更快速的扫描,以便及时采样神经元活动;需要更高的脉冲能量,以便在每个像素停留时间内收集足够的信号。复杂的行为通常涉及到大型的大脑神经网络,该网络既具有局部的连接又具有远程的连接。要想将神经元活动与行为联系起来,需要同时监控非常庞大且分布普遍的神经元的活动,大脑中的神经网络会在几十毫秒内处理传入的刺激,要想了解这种快速的神经元动力学,就需要MPM具备对神经元进行快速成像的能力。快速MPM方法可分为单束扫描技术和多束扫描技术。 多光子显微镜技术是对完整组织进行深层荧光成像的优先技术。美国多光子显微镜数据处理

多光子显微镜是衡量一个国家制造业和高科技发展水平的重要标准之一。多光子显微镜成像深度

有许多方法可以实现快速光栅扫描,例如使用振镜进行快速2D扫描,以及将振镜与可调电动透镜相结合进行快速3D扫描。而可调电动式镜头由于机械惯性的限制,无法在轴向快速切换焦点,影响成像速度。现在它可以被空间光调制器(SLM)取代。远程对焦也是实现3D成像的一种手段,如图2所示。LSU模块中,扫描振镜水平扫描,ASU模块包括物镜L1和反射镜M,通过调整M的位置实现轴向扫描该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速轴向扫描。为了获得更多的神经元成像,可以通过调整显微镜的物镜设计来放大FOV。然而,大NA和大FOV的物镜通常很重,不能快速移动以进行快速轴向扫描,因此大FOV系统依赖于远程聚焦、SLM和可调电动透镜。多光子显微镜成像深度

因斯蔻浦(上海)生物科技有限公司是一家集研发、生产、咨询、规划、销售、服务于一体的服务型企业。公司成立于2019-05-27,多年来在nVista,nVoke,3D bioplotte,invivo行业形成了成熟、可靠的研发、生产体系。Inscopix,envisionTEC,rokit,piezosleep,stoeltingco,unipick,neuronexus,scientifica,alphaomega,divescope,invivo目前推出了nVista,nVoke,3D bioplotte,invivo等多款产品,已经和行业内多家企业建立合作伙伴关系,目前产品已经应用于多个领域。我们坚持技术创新,把握市场关键需求,以重心技术能力,助力仪器仪表发展。因斯蔻浦(上海)生物科技有限公司研发团队不断紧跟nVista,nVoke,3D bioplotte,invivo行业发展趋势,研发与改进新的产品,从而保证公司在新技术研发方面不断提升,确保公司产品符合行业标准和要求。因斯蔻浦(上海)生物科技有限公司严格规范nVista,nVoke,3D bioplotte,invivo产品管理流程,确保公司产品质量的可控可靠。公司拥有销售/售后服务团队,分工明细,服务贴心,为广大用户提供满意的服务。

与多光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责