随着人工智能、物联网、通信技术的高速发展,电网形态随之发生变化,建设能源互联网成为顺应能源变革和数字变革融合发展趋势的根本途径。电力线载波(PLC)通信技术因覆盖面广和无需要额外布线的优势,是能源互联网建设过程中较理想的信息传输载体。HPLC的深化应用,不只给我们带来了更高效、更稳定的通信通道,同时也为低压台区线损治理等各方面的工作,打下了更坚实的基础。可以更好地为广大用电用户提供细致周到的服务,从此复电抢修更加及时到位,居民用电信息也更加有保障。电力线宽带载波通信方式优势表现在哪些方面?电力系统通信PLC是什么

HPLC芯片具有哪些基本的特征?干扰噪声多样。电力线载波通信的较大干扰是噪声,其主要来源是电力网上的所有负载、无线电广播、天电等等。电力线的噪声在室内和室外有所不同,但大致可分为:有色背景噪声,这类噪声主要来源于交直流两用电动机,其功率谱密度随着频率增加而减小,变化缓慢;窄带噪声,主要由电力线的驻波或谐振和短波广播所致,其功率谱密度在该频段内几乎保持不变;与工频异步噪声,来源于电力线上的一些电子设备,主要分布在50Hz~200Hz;与工频同步噪声,一般由工作在电网频率的开关器件造成其噪声频率为工频或其整数倍,持续时间长,频率覆盖范围广,功率大,功率谱密度随着频率上升而减小。深圳HPLC电力系统通信芯片技术开发HPLC芯片不但能有效降低系统成本,同时可以方便快捷地实现自动抄收。

国网的用电信息采集系统建设已经基本完成,现在我们都在讲电力大数据、智能电网。是的,用户用电可以产生各种丰富的数据,但是数据就像货币,流通才具有价值,故而电力数据传输“路线”——电力通信技术的研究是建设智能电网举足轻重的一环。电力线载波通信技术已经基本覆盖全国几亿电力用户,是现在电力通信主导采用方式,其中,70%的本地通信方式采用窄带电力线载波通信技术(10kHz~500KHz)。从国网体系来看,要求电力线载波通信技术可以适应多种业务需求。
从宽带电力线载波通信的小范围的项目应用到国网招标,再到标准的一点点制定完善,宽带电力线载波通信一直在发展推进,但是一直没有大规模的落地应用。此前,宽带电力线载波通信在现场应用,互联互通是一个大问题,互联互通可以节约大量投资、提升运维效率。有**认为,解决互联互通问题后,亿万级宽带载波应用将逐渐浮上水面。而经过宽带电力线载波通信这几年的研究测试,IEEE1901.1标准对物理层通信、数据链路层都进行了技术规范,还将继续研究其他层级的技术规范,可能会实现宽带载波的互联互通,成为宽带电力线载波通信技术规模化应用的开端。电力线载波技术在很大程度上节约了布线施工成本。

电力线载波通信信道的基本特征:1、时变衰减较大。对于一般用户,我国采用的是220V交流两线供电。由于电网上负载的不断接入和切除,马达的停止和启动,电器的开和关灯各种随机事件,使信道特性具有很强的时变性。 2、信号变化复杂。实际测量表明在电力线上不同位置并联诸多不同性质的负载对信号的传输影响很大,随着负载在电力线上的连接断开,在不同的时刻信号衰减也会表现出不同的特点,即负载的变化是随机的,所以信号衰减也会随机发生变化。总之,针对电力线载波通信信道的以上特点,已调信号应具有高的频谱利用率、抗噪声和抗干扰能力强、适宜于在衰落信道中传输等特性。高的抗干扰和抗多径衰落性能,要求在恶劣的信道环境下能够很好的工作,经过调制解调后的输出信噪比(S/N)较大或者误码率较低。电力线载波通讯技术能够有效监测和控制电网中的电力设备。电力系统通信PLC是什么
HPLC芯片的通信模块具备哪些特点?电力系统通信PLC是什么
HPLC芯片的通信模块具备哪些特点?台区自动识别,相邻台区不串扰。HPLC通信模块通过同步获取交流电过零相位偏移量、电压波动量等海量数据并加以分析,可准确判断集中器的供电台区,给出准确可靠的台区归属,为台区线损治理、一终端多台区治理提供支撑。性能监测优化,通信质量有保障:根据HPLC分布式组网的优点,可以实时评估各节点之间的通信质量,不断的优化路径拓扑,打通主从节点之间的通信障碍,为电费回收、电价下发、实时费控等功能提供通信通道支撑。相位拓扑识别,分相治理更均衡。HPLC通信模块配备过零检测电路,通过节点的过零时刻对比技术实现相位识别功能,可以判断出三相相位及线路拓扑关系,有助于提升配网三相不平衡及线损分相治理水平,对提高供电可靠性具有重要意义。电力系统通信PLC是什么