氧化石墨烯(GO)表面有羟基、羧基、环氧基、羰基等亲水性的活性基团,且片层间距较大,使得氧化石墨烯具有超大比表面积和***的离子交换能力。GO的结构与水通蛋白相类似,而蛋白质本身具有优异的离子识别功能,由此可推断氧化石墨烯在分离、过滤及仿生离子传输等领域可能具有潜在的应用价值1-3。GO经过超声可以稳定地分散在水中,再通过传统成膜方法如旋涂、滴涂和真空抽滤等处理后,GO微片可呈现肉眼可见的层状薄膜堆叠,在薄膜的层与层之间形成具有选择性的二维纳米通道。 除此之外,GO由于片层间存在较强的氢键,力学性能优异,易脱离基底而**存在。基于GO薄膜制备方法简单、成本低、高通透性和高选择性等优点,其在水净化领域具有广阔的应用空间。扫描隧道显微镜照片表明,在氧化石墨中氧原子排列为矩形。哪里有氧化石墨改性
氧化石墨烯基纳滤膜水通量远远大于传统的纳滤膜,但是氧化石墨烯纳滤膜对盐离子的截留率还有待提高。Gao等26利用过滤法在氧化石墨烯片层中间混合加入多壁碳纳米管(MWCNTs),复合膜的通量达到113 L/(m2.h.MPa),对于盐离子截留率提高,对于Na2SO4截留率可达到83.5%。Sun等27提出了一种全新的、精确可控的基于GO的复合渗透膜的设计思路,通过将单层二氧化钛(TO)纳米片嵌入具有温和紫外(UV)光照还原的氧化石墨烯(GO)层压材料中,所制备的RGO/TO杂化膜表现出优异的水脱盐性能。附近氧化石墨生产企业氧化石墨正式名称为石墨氧化物或被称为石墨酸,是一种由物质量之比不定的碳、氢、氧元素构成的化合物。
由于GO表面具有较高的亲和力,蛋白质可以吸附在GO表面,因此在生物液体中可以通过蛋白质来调节GO与细胞膜的相互作用。如,血液中存在着大量的血清蛋白,可能会潜在的影响GO的毒性。Ge与其合作者[16]利用电子显微镜技术就观察到牛血清蛋白可以降低GO对细胞膜的渗透性,抑制了GO对细胞膜的破坏,同时降低了GO的细胞毒性。基于分子动力学研究分析,他们推断可能是由于GO-蛋白质之间的作用削弱了GO-磷脂之间的相互作用。与此同时,GO对人血清蛋白的影响也被其他科研工作者所发现,特别是他们观察到了GO可以抑制人血清蛋白与胆红素之间的作用。因此,GO与血清蛋白之间是相互影响的。
氧化石墨烯因独特的结构和性质受到了人们的***关注,其生物相容性的研究已经积累了一定的研究基础,但氧化石墨烯在实际应用中仍然面临很多困难和挑战。首先,氧化石墨烯制备方法的多样性和生物系统的复杂性,会***影响其在体内外的生物相容性,导致研究结果的不一致,因此氧化石墨烯的生物相容性问题不能简单归纳得出结论,需要综合多方面的因素进行深入研究。其次,氧化石墨烯的***活性又取决于时间和本身的浓度,其***机理需要进一步的研究。***,氧化石墨烯对机体的长期毒性以及氧化石墨烯进入细胞的机制、与细胞之间相互作用的机理、细胞/体内代谢途径等尚不清晰。这些问题关乎氧化石墨烯在生物医学领域应用中的安全问题和环境风险评价,需要研究者们不断地研究和探索。氧化石墨烯的表面官能团与水中的金属离子反应形成复杂的络合物。
多层氧化石墨烯(GO)膜在不同pH水平下去除水中有机物质的系统性能评价和机理研究。该研究采用逐层组装法制备了PAH/GO双层膜,对典型单价离子(Na+,Cl-)和多价离子(SO42-,Mg2+)以及有机染料(亚甲蓝MB,罗丹明R-WT)和药物和个人护理品(三氯生TCS,三氯二苯脲TCC)在反渗透膜系统中通过GO膜的行为进行研究。结果发现,在pH=7时,无论其电荷、尺寸或疏水性质如何,GO膜能够高效去除多价阳离子/阴离子和有机物,但对于单价离子的去除率较低。传统的纳滤膜通常带负电,且只能去除带有负电荷的多价离子和有机物。随着pH的变化,GO膜的关键性质(例如电荷,层间距)发生***变化,导致不同的pH依赖性界面现象和分离机制,一些有机物(例如三氯二苯脲)的分子形状由于这种有机物与GO膜的碳表面的迁移性和π-π相互作用而极大地影响了它们的去除。碳基填料可以提高聚合物的热导率,但无法像提高导电性那么明显,甚至低于有效介质理论。哪里有氧化石墨改性
修复石墨烯片层上的缺陷,可以提高石墨烯微片的碳含量和在导电、导热等方面的性能。哪里有氧化石墨改性
解决GO在不同介质中的解理和分散等问题是实现GO广泛应用的重要前提。此外,不同的应用体系往往要不同的功能体现和界面结合等特征,故而要经常对GO表面进行修饰改性。GO本身含有丰富的含氧官能团,也可在GO表面引入其他功能基团,或者利用GO之间和GO与其它物质间的共价键或非共价键作用进行化学反应接枝其他官能团。由于GO结构的不确定性,以上均属于一大类复杂的GO化学,导致采用化学方式对GO进行修饰与改性机理复杂化,很难得到结构单一的产品。尽管面临诸多难以解释清楚的问题,但是对GO复合材料优异性能的期望使得非常必要总结对GO进行修饰改性的常用方法和技术,同时也是氧化石墨烯相关材料应用能否实现稳定、可控规模化应用的关键。哪里有氧化石墨改性