多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

   与传统的单光子宽场荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深度成像的功能,极大地促进了研究人员对整个大脑深部神经的认识。2019年,JeromeLecoq等从脑深部神经元成像、大数量神经元成像、高速神经元成像三个方面讨论了相关的MPM技术。为了将神经元活动与复杂行为联系起来,通常需要对大脑皮层深处的神经元进行成像,这就要求MPM具备深度成像的能力。激发光和发射光会被生物组织高度散射和吸收,这是限制MPM成像深度的主要因素。虽然增加激光强度可以解决散射问题,但会带来其他问题,如烧焦样品、散焦和近表面荧光激发。增加MPM成像深度的比较好方法是使用更长的波长作为激发光。另外,对于双光子(2P)成像而言,离焦和近表面荧光激发是两个比较大的深度限制因素,而对于三光子(3P)成像这两个问题大大减小,但是三光子成像由于荧光团的吸收截面比2P要小得多,所以需要更高数量级的脉冲能量才能获得与2P激发的相同强度的荧光信号。双光子显微镜可以在保持细胞活性的情况下进行成像,这对于研究细胞生理学和生物化学过程非常有用。美国荧光多光子显微镜三维分辨率

美国荧光多光子显微镜三维分辨率,多光子显微镜

多光子显微镜对成像深度的改善利用红光或红外光激发,光散射小(小粒子的散射与波长的四次方的成反比)。不需要***,能更多收集来自成像截面的散射光子。***不能区分由离焦区域或焦点区发射出的散射光子,多光子在深层成像信噪比好。单光子激发所用的紫外或可见光在光束到达焦平面之前易被样品吸收而衰减,不易对深层激发。多光子荧光成像的特点。深度成像∶与共聚焦相比能更好地对厚散射物质成像。信噪比∶多光子吸收采用的波长是单光子吸收的2倍以上,所以显微试样中的瑞利散射更小,荧光测定的信噪比更高。观察活细胞∶离子测量(i.e.Ca2+),GFP,发育生物学等—减少了光毒性和光漂白,能对细胞长时间观察。美国全自动多光子显微镜由于其非侵入性和高分辨率的特点,多光子显微镜在神经科学、ai症研究、免疫学等领域发挥了重要作用。

美国荧光多光子显微镜三维分辨率,多光子显微镜

Ca2+是一种重要的第二信使,在调节细胞生理反应中起着重要作用。发展和利用双光子荧光显微成像技术观测Ca2+荧光信号,可以从某些方面分析生物体或细胞的变化机制,具有重要意义。利用双光子荧光显微成像技术,我们可以观察到细胞内荧光探针标记的Ca2*的时间和空间荧光图像的变化,也可以观察到一定水平或部分细胞内(Ca2+)的荧光图像和变化。通过对单个细胞的研究发现,Ca2+的分布不仅在细胞的局部区域之间是不均匀的,而且在细胞内不同深度或层次的局部区域之间也存在不同程度的Ca2+梯度,称为空间Ca2+梯度。

多束扫描技术可以同时对神经元组织的不同位置进行成像。该技术:对于两个远程成像位置(相距1-2mm以上),通常采用两个**的路径进行成像;对于相邻区域,通常使用单个物镜的多个光束进行成像。多光束扫描技术必须特别注意激发光束之间的串扰,这可以通过事后光源分离或时空复用来解决。事后光源分离法是指分离光束以消除串扰的算法;时空复用法是指同时使用多个激发光束,每个光束的脉冲在时间上被延迟,使不同光束激发的单个荧光信号可以暂时分离。引入的光束越多,可以成像的神经元越多,但多束会导致荧光衰减时间重叠增加,从而限制了分辨信号源的能力;并且复用对电子设备的工作速度要求很高;大量的光束也需要较高的激光功率来维持单束的信噪比,这样容易导致组织损伤。滔博生物多光子显微镜广应用于生命科学、生物医学和材料科学领域!

美国荧光多光子显微镜三维分辨率,多光子显微镜

随着生物分子光学标记技术的不断进步,光学技术在揭示生命活动基本规律的研究中正发挥越来越重要的作用,也为医学诊疗提供了更多、更有效的手段。生物医学光学(BiomedicalOptics)是近年来受到国际光学界和生物医学界关注的研究热点,在生物活检、光动力、细胞结构与功能检测、基因表达规律的在体研究等问题上取得了一系列研究成果,目前正在从宏观到微观上对大脑活动与功能进行多层面的研究。细胞重大生命活动(包括细胞增殖、分化、凋亡及信号转导)的发生和调节是通过生物大分子间(如蛋白质-蛋白质、蛋白质-核酸等)相互作用来实现的。蛋白质作为基因调控的产物,与细胞和机体生理过程代谢直接相关,深入研究基因表达及蛋白质-蛋白质相互作用不仅能揭示生命活动的基本规律,同时也能深入了解疾病发生的分子机理,进而为寻找更有效的药物分子、提高药物筛选和药物设计的效率提供新的方法和思路。突破传统光学成像极限,多光子显微镜适应各种复杂环境。进口多光子显微镜技术

多光子显微镜在生物医学研究中有广泛的应用,可以观察细胞内的亚细胞结构、蛋白质分布、细胞活动等。美国荧光多光子显微镜三维分辨率

    现代分子生物学技术的迅速发展和科技的进步,特别是随着后基因组时代的到来,人们已经能够根据需要建立各种细胞模型,为在体研究基因表达规律、分子间的相互作用、细胞的增殖、细胞信号转导、诱导分化、细胞凋亡以及新的血管生成等提供了良好的生物学条件。然而,尽管人们利用现有的分子生物学方法,已经对基因表达和蛋白质之间的相互作用进行了深入、细致的研究,但仍然不能实现对蛋白质和基因活动的实时、动态监测。在细胞的生理过程中,基因、尤其是蛋白质的表达、修饰和相万作用往往发生可逆的、动态的变化。目前的分子生物学方法还不能捕获到蛋白质和基因的这些变化,但获取这些信息对与研究基因的表达和蛋白质之间的相互作用又至关重要。因此,发展能用于、动态、实时、连续监测蛋白质和基因活动的方法非常必要。 美国荧光多光子显微镜三维分辨率

与多光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责