多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

在生物成像中,我司多光子显微镜具有清(清晰),快(快速),深(深层),活这四个方面。结合了多光子上转化材料以及时间编码的结构光超分辨技术,实现了快速(50MHz的扫描速度),超分辨(超衍射极限)成像。作为一种新的高速,超高分辨率的成像系统,MUTE-SIM可以帮助我们对快速运动的生物图像进行分辨率高的成像。尽管关于深度成像的应用我们没有进一步展示,但是结合1560nm近红外光相对于可见光更佳的穿透性,我们相信该技术将有利于对生物组织进行高速,超分辨,高深度地成像,有助于生物影像学的发展。滔博生物TOP-Bright是一家集研发,生产,销售于一体的专注于神经科学产品及致力于向高校、科研机构等领域提供实验室一体化方案的高科技企业。业务服务范围已遍布至全国各地几百家实验室。目前公司主营产品是享誉全球的国际品牌和产品,这些仪器设备都是科学研究所必备且不可替代的基础仪器。多光子显微镜可以更好的了解神经信号之间复杂动态的编码过程。bruker多光子显微镜层析成像

bruker多光子显微镜层析成像,多光子显微镜

Ca2+是重要的第二信使,对于调节细胞的生理反应具有极其重要的作用,开发和利用双光子荧光显微成像技术对Ca2+荧光信号进行观测,可以从某些方面对有机体或细胞的变化机制进行分析,具有重要的意义。利用双光子荧光显微成像技术可以观察细胞内用荧光探针标记的Ca2*的时间和空间的荧光图像的变化,还可以观察细胞某一层面或局部的(Ca2+)荧光图像和变化。通过对单细胞的研究发现,Ca2+不仅在细胞局部区域间的分布是不均匀的,而且细胞内各局部区域的不同深度或层次间也存在不同程度的Ca2+梯差即所谓的空间Ca2梯差。美国清醒动物多光子显微镜价格多少更多关于多光子显微镜的信息有哪些?

bruker多光子显微镜层析成像,多光子显微镜

对于双光子(2P)成像,散焦和近表面荧光激发是两个相对较大的深度限制因素,而对于三光子(3P)成像,这两个问题**减少。  然而,由于荧光团的吸收截面远小于2P,三光子成像需要更高的脉冲能量才能获得与2P相同激发强度的荧光信号。  功能性3P显微镜比结构性3P显微镜要求更高,后者需要更快的扫描速度以便及时采样神经元活动。  为了在每个像素的停留时间内收集足够的信号,需要更高的脉冲能量。  复杂的行为通常涉及大规模的大脑神经网络,这些网络既有本地连接,也有远程连接。  为了将神经元的活动与行为联系起来,需要同时监测* * *分布的超大型神经元的活动。  大脑中的神经网络将在几十毫秒内处理输入的刺激。  为了理解这种快速神经元动力学,MPM需要快速成像神经元的能力。  快速MPM方法可分为单束扫描技术和多束扫描技术。  

2020年,TonmoyChakraborty等人提出了加速2PM轴向扫描速度的方法[2]。在光学显微镜中,物镜或样品缓慢的轴向扫描速度限制了体成像的速度。近年来,通过使用远程聚焦技术或电调谐透镜(ETL)已经实现了快速轴向扫描。但远程对焦时对反射镜的机械驱动会限制轴向扫描速度,ETL会引入球差和高阶像差,无法进行高分辨率成像。为了克服这些限制,该小组引入了一种新的光学设计,可以将横向扫描转换为无球面像差的轴向扫描,以实现高分辨率成像。有两种方法可以实现这种设计。***个可以执行离散的轴向扫描,另一个可以执行连续的轴向扫描。如图3a所示,特定装置由两个垂直臂组成,每个臂具有4F望远镜和物镜。远程聚焦臂由振镜扫描镜(GSM)和空气物镜(OBJ1)组成,另一个臂(称为照明臂)由浸没物镜(OBJ2)组成。两个臂对齐,使得GSM与两个物镜的后焦平面共轭。准直后的激光束经偏振分束器反射进入远程聚焦臂,由GSM进行扫描,使OBJ1产生的激光焦点可以进行水平扫描。高速扫描,高分辨率,多光子显微镜助力科研进步。

bruker多光子显微镜层析成像,多光子显微镜

单光子激发荧光的过程,就是荧光分子吸收一个光子,从基态跃迁到激发态,跃迁以后,能量较大的激发态分子,通过内转换把部分能量转移给周围的分子,自己回到比较低电子激发态的比较低振动能级。处于比较低电子激发态的比较低振动能级的分子的平均寿命大约在10s左右。这时它不是通过内转换的方式来消耗能量,回到基态,而是通过发射出相应的光量子来释放能量,回到基态的各个不同的振动能级时,就发射荧光。因为在发射荧光以前已经有一部分能量被消耗,所以发射的荧光的能量要比吸收的能量小,也就是荧光的特征波长要比吸收的特征波长来的长。双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。bruker多光子显微镜层析成像

多光子显微镜,提高医学病理诊断的准确性和效率。bruker多光子显微镜层析成像

    Ca2+是重要的第二信使,对于调节细胞的生理反应具有重要的作用,开发和利用双光子荧光显微成像技术对Ca2+荧光信号进行观测,可以从某些方面对有机体或细胞的变化机制进行分析,具有重要的意义。利用双光子荧光显微成像技术可以观察细胞内用荧光探针标记的Ca2*的时间和空间的荧光图像的变化,还可以观察细胞某一层面或局部的(Ca2+)荧光图像和变化。通过对单细胞的研究发现,Ca2+不仅在细胞局部区域间的分布是不均匀的,而且细胞内各局部区域的不同深度或层次间也存在不同程度的Ca2+梯差即所谓的空间Ca2梯差。bruker多光子显微镜层析成像

与多光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责