针对刀具磨损状态在实际生产加工过程中难以在线监测这个问题,提出一种通过通信技术获取机床内部数据,对当前的刀具磨损状态进行识别的方法。通过采集机床内部实时数据并将其与实际加工情景紧密结合,能直接反映当前的加工状态。将卷积神经网络用于构建刀具磨损状态识别模型,直接将采集到数据作为输入,得到了和传统方法精度近似的预测模型,模型在训练集和在线验证试验中的表现都符合预期。刀具磨损状态识别的方法在投入使用时还有一些问题有待解决:①现有数据是在相同的加工条件下测得的,而实际加工过程中,加工参数以及加工情景是不断变化的,因此需要在下一步的研究中,进行变参数试验,考虑加工参数对于刀具磨损的影响,并针对常用的一些加工场景,建立不同的模型库。变换加工场景时,通过获取当前场景,及时匹配相应的预测模型即可。②本研究中模型是一个固定的模型。今后需要根据实时的信号以及已知的磨损状态,对模型进行实时更新,从而在实时监测过程中实现自学习,不断提升模型的精度和预测效果。通过在电机上安装传感器,实时采集电机的运行数据,如电流、电压、转速等,传输到监测系统进行分析和处理。温州电机监测台
智能船舶是指基于“网络平台”的信息技术应用,以“大数据”为基础,通过数据分析和数据处理,实现运行船舶智能感知、判断分析和决策控制,从技术、设备、管理等多个层面保证船舶航行的安全和效率,大幅减少甚至杜绝人为或外部因素造成的各种事故。其主要目标就是安全、经济、高效、环保。而智能机舱是通过综合状态监测系统所获得的设备信息和数据,实现对机舱内机械设备的运行状态、健康状况进行分析和评估,进而完成设备操作辅助决策和维护保养计划的综合管控系统。它能及时地、准确地对多种异常状态或故障状态做出诊断,预防或消除故障,把故障损失降低到较低水平,同时对设备的运行进行必要的决策支持,提高设备运行的可靠性、安全性和有效性,也能确定设备的良好维护时间,降低设备全寿命周期费用,增加设备的稳定性。近日,盈蓓德成功交付了InsightlO智能监测系统,就是智能船舶中的智能机舱系统,这一创新技术将为船舶行业带来全新的智能化管理体验,标志着船舶行业智能化新篇章的开启。InsightlO智能监测系统是盈蓓德经过长期研发的成果,该系统能够实时监测机舱设备的各项运行数据。嘉兴仿真监测设备β-Star监测系统是盈蓓德智能科技有限公司的产品,为电机提供数据监测和故障预判服务。
功率:电机功率是指电机输出的机械功率,可以通过电流和转速进行计算得出,也可以直接测量得到。它是评估电机工作性能的重要指标,高功率因数意味着电机更有效地转化电能为机械功率,有助于提高效率。温度:电机的工作温度应在一定范围内,过高或过低的温度都可能引发问题。如果电机过热,则可能表明电机存在故障或过载状态。常用检测方法包括使用温度计或红外线热像仪来测量电机的温度。绝缘电阻:绝缘电阻是测量电机绕组绝缘质量的参数,它反映了电机绕组的绝缘性能,对于确保电机的安全运行至关重要。除了上述参数外,电机监测还可能涉及其他电气参数,如有功功率、无功功率、定子电压、定子电流、励磁电流、励磁电压等。这些参数能够提供更***的电机运行状态信息,有助于及时发现和处理电机故障。在进行电机监测时,需要采用合适的监测技术和设备,如传感器、测量仪表等,以实现对这些参数的准确测量和实时监测。通过对电机运行数据的分析,可以及时发现电机的异常情况,预防潜在故障的发生,提高电机的运行效率和可靠性。
电机是把电能转换为机械能的机器,存在于生活中的方方面面,可以为生产设备运转时为其提供拖动动力。机械在经过长时间使用后,都会出现一些意外情况,在电机出现振动异常时,不仅能耗会增加,甚至会引起人员伤亡。下面了解一下电机出现剧烈振动的原因,以及如何才能及时发现。①在工作机振动的时候,往往通过连轴器及技术影响到电机,从而产生振动。②电机轴承间隙过大时,电机的回转中心会随着负载的变化而变化,因此电机就会产生振动。③转子不平衡或者是轴刚度不足:在轴的刚度不足时,在运行过程中因为离心力、磁场力的作用,轴就会产生弯曲,从而产生振动,这种振动主要体现在水平方向。电机振动监测方案:温度振动传感器可以同时检测电机X/Y/Z轴三轴振动信号,并将数据实时上传至数据监控平台,防护等级高,IP67的防护等级,不仅可以用在多尘、干燥的环境,也可以用于水下潜水泵等地。它拥有多种数据传输方式,根据不同的使用场景,有多种监测方案可选。通过云计算和大数据技术,可以实现电机的远程监测和集中管理,提高维护效率和管理水平。
作为工业领域的一种关键旋转设备,对于终端用来说,关于电机维护的主要是电气班组的设备工程师、电机维护工程师、电机检修人员等;对于电机厂家以及电机经销商来说,主要是电机售后服务工程师、电机销售人员,会涉及到电机的运行维护;险此之外,还有第三方检修人员等。目前已经有很多智能产品号称可以实现电机预测性维护,但问题非常多。1)传感器安装难。设备状态监测需要振动、噪声、温度传感器,通讯协议并不统一,自成体系,安装、使用、维护成本高昂。2)技术成本高。工业场景设备类型多,运行工况复杂,预测性维护算法涉及数据预处理、工业机理、机器学习,技术要求很高。3)时间成本高。预测性维护要实现,前期需要大量历史数据支撑,数据采集、归纳、分析是一个漫长的过程。的电机智能运维,虽然被各大宣传媒体提得很多,但还远远未到落地很好乃至普及的程度,不论是预测性维护的预测效果,还是电机的智能运维的市场推广以及市场接受程度,对于电机运维来说,都还有很远的一段距离!电机监测是一项关键的技术活动,旨在确保电机的正常运行、优化性能以及预防潜在故障。嘉兴设备监测介绍
电机监测广泛应用于各个领域,如能源、交通运输、家用电器等。温州电机监测台
旋转类设备监测是确保设备正常运行、预防故障以及提高生产效率的关键环节。以下是对旋转类设备监测的详细阐述:监测目的:及时发现设备故障或潜在问题,避免生产中断和意外停机。通过数据分析,预测设备的维护周期和更换部件的时间,实现预测性维护。优化设备运行参数,提高设备的运行效率和性能。主要监测内容:振动监测:通过振动传感器监测设备的振动情况。振动数据可以反映设备的运行状态、轴承磨损、不平衡等问题。结合频谱分析、时域分析等方法,可以判断设备的健康状况。温度监测:利用温度传感器监测设备关键部位的温度变化。温度异常可能表明设备存在过载、散热不良或电气故障等问题。油液分析:对于使用润滑油的旋转设备,定期取样进行油液分析可以评估设备的磨损、污染和腐蚀情况。通过检测油液中的金属颗粒、水分和酸值等参数,可以预测设备的维护需求。噪声分析:通过声学传感器监测设备的噪声特征。异常声音可能表明设备存在故障或磨损。噪声分析有助于及时发现并解决问题。温州电机监测台