酸性环境(pH值2.0-4.0)通常⽤于产⽣⽤于活***物装载的跨膜pH梯度。在37℃和pH2.0条件下,SM/Chol脂质体(55/45,mol/mol)的⽔解速率⽐DSPC/Chol脂质体慢约100倍。此外,含有SM/Chol的脂质体表现出比较好的药代动⼒学特性,即增加循环时间并增强药物向靶组织的递送。胆固醇(Chol)是脂质体双分⼦层的另⼀个主要成分,⼏乎可以⽤于所有的商业产品。Chol的加⼊可以促进脂链的堆积和双分⼦层的形成,调节膜的流动性/刚性,并进⼀步影响药物释放、脂质体的稳定性和胞外分泌动⼒学。对于Shingrix(带状疱疹疫苗,含有糖蛋⽩E抗原和AS01B脂质体佐剂系统)的产物,Chol可以避免QS21(AS01B佐剂系统中的免疫增强剂之⼀)以2:1的⽐例(Chol:QS21,w/w)⽔解。对于AmBisome的产物,与⾮甾醇相⽐,Chol降低了脂质体制剂的毒性。Chol对双分⼦层性质的影响是浓度依赖性的。据报道,低浓度(2.5mol%)和⾼浓度(>30mol%)的Chol对脂质双分⼦层的性质影响不⼤。5<Cholmol%<30的Chol的“冷凝效应”或“有序效应”导致颗粒⼤⼩从220nm逐渐增⼤到472nm,膜的流动性降低,药物释放减少。除了Chol,其他与Chol结构相似的甾醇,如⻩体酮、⻨⻆甾醇和⽺⽑甾醇,也被研究⽤于调节膜的刚性和稳定性。载药脂质体可以采用超滤法、凝胶过滤法、低速离心法、透析法等多种方法来纯化。microbubble脂质体载药研发
脂质体制备方法:二次乳化法该方法已被DepoCyte、DepoDur和Expel三种商业产品⽤于⽣产MVLs。整个⽣产过程通常包括以下四个顺序操作:(1)形成“油包⽔”乳液,(2)形成“油包⽔”乳液,(3)在汽提⽓体或真空压⼒的帮助下进⾏溶剂萃取,(4)微滤去除游离药物,浓缩和交换外部溶液。在⽣产过程中,应提供⽆菌保证,因为由于微粒径的MVLs不能通过0.22µm过滤作为⽆菌批次⽣产。Lu等研究了⼯艺对布⽐卡因MVLs关键质量属性的影响,发现第⼀乳的粒径随着脂质浓度的增加⽽增⼤,剪切速度对粒径影响较⼤。对于第⼆种乳液,在溶剂去除过程中,由于⼀些MVLs坍塌,药物从内⽔相泄漏,导致包封效率降低。此外,⾼温促进了脂质双分⼦层的迁移和重排,导致脂质融合和⽔腔的坍塌。成都脂质体载药专业脂质体制备方法:原位制备脂质体。
4PEG2000在脂质体中的作用
PEG2000是一种聚乙二醇(PEG)衍生物,常用于脂质体的表面修饰。它在脂质体中具有多种作用:1.稳定性增强:PEG2000可以在脂质体表面形成一层稳定的水合层,防止脂质体的聚集和沉淀,从而提高其在溶液中的稳定性。2.血液循环延长:脂质体表面修饰PEG2000可以降低脂质体被吞噬的速度,延长其在血液循环中的半衰期,从而增加药物的生物利用度。3.免疫原性降低:PEG2000可以掩盖脂质体表面的亲水性基团,减少脂质体与免疫系统的识别和***,降低免疫原性,提高脂质体的生物相容性。4.药物释放调控:PEG2000修饰的脂质体可以通过改变PEG链的长度和密度来调控药物的释放速率和方式,实现对药物的精确控制释放。在Doxil和Onivyde中,甲氧基peg(Mw2000Da)与DSPE(MPEG-DSPE)共价结合,提供了“隐形”和空间稳定的脂质体。PEG的分⼦量和PEG-DSPE在脂质组成中的摩尔百分⽐对双层填料、循环时间和热⼒学稳定性有重要影响。⾼分⼦量的PEG(>2000Da)移植到脂质头群上,表现出来⾃脂质体表⾯的排斥⼒,并保护脂质体不与⾎清蛋⽩结合,避免被单核吞噬系统(MPS)进⼀步***,但也减少了靶细胞对脂质体的相互作⽤和内吞作⽤。
脂质体的粒径和粒径分布脂质体的整个药代动⼒学过程,如全⾝循环和MPS***、外渗到组织间质、细胞外基质间质运输以及细胞摄取和细胞内运输,都是依赖于尺⼨的。粒径<200nm的颗粒可降低⾎清蛋⽩的调理作⽤,降低MPS的***率。在⼩⿏⽩⾎病模型中,对于Myocet来说,较⼩的脂质体具有更⾼的抗**功效和增加的平均⽣存时间。粒径为2.0-3.5µm的Mepact可促使单核细胞/巨噬细胞吞噬,触发*****的免疫调节作⽤。Singh等⼈发现,含有不同颗粒⼤⼩的佐剂脂质体(ArmyLiposomeFormulation,ALF)的疫苗会产⽣不同的免疫反应,即树突状细胞更有效地摄取10-200nm范围内的⼩颗粒,⽽其他免疫细胞,如巨噬细胞,则倾向于吞噬⼤颗粒。Niu等⼈研究了⼝服给药的胰岛素负载脂质体,发现直径为150nm和400nm的脂质体表现出较慢且持续时间⻓达24⼩时的降糖作⽤,⽽粒径约为80nm和2µm的脂质体则分别表现出短暂且⽆药理作⽤。文献表明,对于*****的脂质体来说,小于200nm的脂质囊泡大小可以从物理肝脏筛选过程中逃逸。根据肝窦的大小,需要小于150nm的囊泡才能通过高渗透性的**血管穿透到恶性组织中。因此,它是由增强的渗透率(EPR)效应控制的,这有助于脂质体通过被动靶向在**中积累。脂质体制备方法:二次乳化法。
脂质体的缓释作用***药物可通过脂质体的包封,以缓释方式进入体循环。DepoCyt®由阿糖胞苷组成,是1999年进入市场的***个缓释注射产品。DepoFoam™是SkyePharma在DepoCyt®that中应用的一种缓释注射技术,用于***淋巴瘤,即淋巴瘤性脑膜炎。虽然阿糖胞苷可用于控制这类淋巴瘤,但由于其血浆半衰期短,约为20分钟,因此需要频繁地进行脊柱注射,这给患者带来了不依从性、痛苦和高昂的***费用。相反,使用DepoCyt®可以将注射频率降低到每2nd周一次,DepoCyt®是由包裹在球形颗粒的非同心内部水腔内的药物组成的。分隔内部腔室的双层脂质膜由天然存在的脂质的合成类似物组成。与未包裹的阿糖胞苷相比,DepoCyt®通过鞘内给药比较大化了细胞周期s期特异性细胞毒***物的***潜力。此外,由于阿糖胞苷延长CSFt1/2时间,可减少给药频率。基因递送用的相关阳离子脂质体。脑靶向脂质体载药研发
脂质体的缓释作用可以减少给药频率。microbubble脂质体载药研发
脂质体靶向递送中叶酸配体修饰脂质与生物活性小分子(如叶酸)的结合已被研究用于靶向递送核酸。例如,由叶酸与1-棕榈酰-2-油酰-sn-甘油-3-非共价结合而形成的脂质体乙基磷脂胆碱:胆固醇脂质体显著提高胸苷激酶质粒DNA转染效率,抑制体外TSA和SCC7细胞生长。这些叶酸相关的脂质体在移植SCC7**的小鼠中显示出较高的抗**效果。在另一种方法中,叶酸标记的阳离子脂质体与小牛胸腺DNA复合物***巨噬细胞,与不含叶酸的普通阳离子脂质体相比,显示出更高的DNA叶酸受体表达细胞的递送。在荷瘤小鼠中,与不含叶酸的脂质体相比,叶酸标记的脂质体诱导干扰素-g和白细胞介素-6的产生,延长了存活时间。甘草次酸已被用于靶向肝细胞肝*细胞,基于一项研究表明,与邻近的非**肝细胞相比,甘草次酸的结合靶点蛋白激酶C在肝细胞*细胞表面的表达更高。合成了甘次酸-次酸-聚乙二醇-聚胆甾醇缀合物,并将其与DOTAP和胆固醇配制成阳离子脂质体。这些脂质体与表达GFP的质粒DNA形成复合物的能力更高,并且与缺乏甘次酸的对照阳离子Lipo脂质体相比,能增强质粒DNA转染至肝*细胞的能力。microbubble脂质体载药研发
南京星叶生物科技有限公司在同行业领域中,一直处在一个不断锐意进取,不断制造创新的市场高度,多年以来致力于发展富有创新价值理念的产品标准,在江苏省等地区的医药健康中始终保持良好的商业口碑,成绩让我们喜悦,但不会让我们止步,残酷的市场磨炼了我们坚强不屈的意志,和谐温馨的工作环境,富有营养的公司土壤滋养着我们不断开拓创新,勇于进取的无限潜力,南京星叶生物科技供应携手大家一起走向共同辉煌的未来,回首过去,我们不会因为取得了一点点成绩而沾沾自喜,相反的是面对竞争越来越激烈的市场氛围,我们更要明确自己的不足,做好迎接新挑战的准备,要不畏困难,激流勇进,以一个更崭新的精神面貌迎接大家,共同走向辉煌回来!