因此,可以实现靶向和长 循环的双重好处。 免疫脂质体是利用抗体或其片段与脂质体之间的各种类型的连锁来制备的。根据制备方法的不同, 可以在脂质上进行连接, 然 后脂质可用于制造脂质体或可以在脂质体上进行连接。 常用的键合类型是抗体和脂质体之间的共价和非共价偶联。在共价偶联中, 氨基(酰胺键形成)或巯基(马来酰亚胺反应) 是偶联过程的主要活性位点。然而, 在非共价偶联中, 用生物素修饰的脂质体制备脂质体, 靶向蛋白分子附着在脂质体上。增加循环半衰期, 靶向特异性和**小化药物损失和降解是免疫脂质体的主要优点。 除了有前景 的应用之外, 免疫脂质体还有一个主要缺点, 即由于反复注射, 可以观察到免疫原性和循环***率的增加。小于80纳米的免疫脂质体(作为有效递送的要求)可能会从肿瘤部位迅速消除。Zeta电位被认为是影响细胞摄取和药物传递的重要因素之一。江苏脂质体载药给药
酸性环境(pH值2.0-4.0)通常⽤于产⽣⽤于活***物装载的跨膜pH梯度。在37℃和pH2.0条件下,SM/Chol脂质体(55/45,mol/mol)的⽔解速率⽐DSPC/Chol脂质体慢约100倍。此外,含有SM/Chol的脂质体表现出比较好的药代动⼒学特性,即增加循环时间并增强药物向靶组织的递送。胆固醇(Chol)是脂质体双分⼦层的另⼀个主要成分,⼏乎可以⽤于所有的商业产品。Chol的加⼊可以促进脂链的堆积和双分⼦层的形成,调节膜的流动性/刚性,并进⼀步影响药物释放、脂质体的稳定性和胞外分泌动⼒学。对于Shingrix(带状疱疹疫苗,含有糖蛋⽩E抗原和AS01B脂质体佐剂系统)的产物,Chol可以避免QS21(AS01B佐剂系统中的免疫增强剂之⼀)以2:1的⽐例(Chol:QS21,w/w)⽔解。对于AmBisome的产物,与⾮甾醇相⽐,Chol降低了脂质体制剂的毒性。Chol对双分⼦层性质的影响是浓度依赖性的。据报道,低浓度(2.5mol%)和⾼浓度(>30mol%)的Chol对脂质双分⼦层的性质影响不⼤。5<Cholmol%<30的Chol的“冷凝效应”或“有序效应”导致颗粒⼤⼩从220nm逐渐增⼤到472nm,膜的流动性降低,药物释放减少。除了Chol,其他与Chol结构相似的甾醇,如⻩体酮、⻨⻆甾醇和⽺⽑甾醇,也被研究⽤于调节膜的刚性和稳定性。脂质体载药影像脂质体根据室室结构和层状结构可分为单层囊泡(ULVs)、寡层囊泡(OLVs)、多层囊泡(MLV)和多泡脂质体(MVLs)。
固体脂质纳米颗粒和纳米结构脂质载体虽然脂质体作为药物载体是有用的,但它们需要使用有机溶剂的复杂生产方法,在包裹药物方面表现出低效率,并且难以大规模执行。固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC)的开发是为了解决这些缺点。传统的脂质体由液晶脂质双层组成,而SLN由固体脂质组成,和NLC由固体和液晶脂质混合物组成。SLN和NLC的粒径在40~1000nm之间。SLN和NLC表现出增强的物理稳定性,解决了脂质体基础配方的主要限制之一。SLN和NLC还具有更高的装载能力和更高的生物利用度,不需要使用有机溶剂就可以大规模生产,并且比其他LNPs更稳定。此外,分子在固体状态下迁移率的降低使得SLN和NLC能够更精确地控制其药物有效载荷的释放。然而,在长期储存中,SLN的结晶可以将掺入的药物排出到周围介质中
主动药物装载⽅法,也称为远程药物装载⽅法,涉及在空脂质体产⽣后装载药物制剂。pH值或离⼦浓度的跨膜梯度是促进药物跨膜扩散进⼊脂质体内核的驱动⼒。药物包载过程⼤约需要5~30分钟,可达到较⾼的装载效率(90%以上)。Doxil是基于硫酸铵跨膜梯度的药物负载的典型例⼦。由于脂质体核⼼的(NH4)2SO4浓度远⾼于外界介质,具有⾼渗透性和⾟醇-缓冲分配系数的DOX-NH2中性分⼦通过脂质双分⼦层扩散,具有纤维状结晶形式的(DOX-NH3)2SO4沉淀在脂质体的核⼼产⽣。(DOX-NH3)2SO4的低溶解度使脂质体内渗透压降⾄比较低,从⽽保持脂质体的完整性。对于Myocet产品临床使⽤前先加载DOX。跨膜pH梯度是DOX加载的驱动⼒。Myocet在⼀个包装中有三瓶,包括1号瓶::阿霉素HCl红⾊冻⼲粉;2号瓶:脂质体悬浮液溶于pH4-5300mM 柠檬酸中;3号瓶:碳酸钠缓冲液。临床使⽤前将空脂质体(2号瓶)注射到碳酸钠缓冲液(3号瓶)中,调节外脂质体介质pH值为7-8,然后与DOX⽣理盐⽔溶液混合。脂质体介质中中性形式的DOX分⼦(pKa=8.3)穿过脂质体双分⼦层,在囊泡内部形成独特的DOX-柠檬酸复合物。DOX-柠檬酸盐复合物呈现成束的柔性纤维,归因于DOX单体具有相对平坦的环形堆叠在⼀起形成纤维,负载效率可达95%以上。脂质体各组分对核酸递送效率的影响。
利用设计的脂质,他们发现由1,2-二油醇-3-二甲基氨基-丙烷(DODMA)阳离子脂质组成的核酸脂质颗粒在小鼠和食蟹猴中分别以0.01mg/kg和0.3mg/kg的剂量包封siRNA时表现出基因沉默作用。**近的一项构效关系研究表明,脂质结构的细微差异可能导致转染效率的明显差异。作者设计并合成了1,4,7,10-四氮杂环十二烷环基和含咪唑的阳离子脂质,它们具有不同的疏水区域(例如,分别为胆固醇和双薯蓣皂苷配基)。结果表明,这两种阳离子脂质在HEK293细胞中诱导有效的基因转染。脂质体质量控制的重要性。江苏脂质体载药给药
一种含有DOPE的脂质制剂被发现可以增加各种细胞类型中GFP特异性siRNA的摄取。江苏脂质体载药给药
1脂质体结构
脂质体根据室室结构和层状结构可分为单层囊泡(ULVs)、寡层囊泡(OLVs)、多层囊泡(MLV)和多泡脂质体(MVLs)。OLVs和MLV呈阴离⼦样结构,但分别存在2-5和>5个同⼼脂质双分⼦层。与MLV不同,MVLs包括数百个由单层脂质膜包围的⾮同⼼⽔室,并呈现蜂窝状结构。根据颗粒⼤⼩,ULVs可进⼀步分为⼩单层囊泡(SUVs,30-100nm)、⼤单层囊泡(LUVs,>100nm)和⼤单层囊泡(LUVs,>1000nm)。Arikaye(阿⽶卡星脂质体吸⼊悬浮液)因其⼤粒径(200-300nm)⽽被认为是LUV。Vyxeos(注射⽤柔红霉素:阿糖胞苷脂质体)是⼀种双层脂质体系统(,它是在第⼀次药物阿糖胞苷装载过程中产⽣的。内部⽚层形成的机制被解释为脂质双层的热⼒学响应,以减少脂质体的表⾯积体积⽐,这是由于⽔的流出⽽引起的,以应对外部渗透挑战。Myocet(阿霉素脂质体)和Mepact(⽶法莫肽脂质体粉剂⽤于浓缩分散输注)为MLV。丰富的⽚层为亲脂化合物的包封提供了较⼤的空间。直径为微⽶的产品有Mepact、DepoCyt(阿糖胞苷脂质体混悬液)、DepoDur(硫酸**缓释脂质体注射液)和expel(布⽐卡因脂质体注射混悬液)四种。Mepactis为⽆菌冻⼲饼,⽤0.9%的⽣理盐⽔溶液重构后,会形成粒径为2.0-3.5µm的多层脂质体。 江苏脂质体载药给药
南京星叶生物科技有限公司是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在江苏省等地区的医药健康中汇聚了大量的人脉以及**,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是比较好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同南京星叶生物科技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!