Quantum X shape是Nanoscribe推出的全新高精度3D打印系统,用于快速原型制作和晶圆级批量生产,以充分挖掘3D微纳加工在科研和工业生产领域的潜力。该系统是基于双光子聚合技术(2PP)的专业激光直写系统,可为亚微米精度的2.5D和3D物体的微纳加工提供极高的设计自由度。Quantum X shape可实现在6英寸的晶圆片上进行高精度3D微纳加工。这种效率的提升对于晶圆级批量生产尤其重要,这对于科研和工业生产领域应用有着重大意义。总而言之,该系统拓宽了3D微纳加工在多个科研领域和工业行业应用的更多可能性(如生命科学、材料工程、微流体、微纳光学、微机械和微电子机械系统(MEMS)等) Nanoscribe的技术能够实现微米级别的精确打印,为科学研究和工业应用提供了全新的可能性。实验室Nanoscribe生物医学

Nanoscribe首届线上用户大会于九月顺利召开,在微流控研究中,通常在针对微流控器件和芯片的快速成型制作中会结合不同制造方法。亚琛工业大学(RWTHUniversityofAachen)和不来梅大学(UniversityofBremen)的研究小组提出将三维结构的芯片结构打印到预制微纳通道中。生命科学研究的驱动力是三维打印模拟人类细胞形状和大小的支架,以推动细胞培养和组织工程学。丹麦技术大学(DTU)和德国于利希研究中心的研究团队展示了他们的成就,并强调了光刻胶如IP-L780和Nanoscribe新型柔性打印材料IP-PDMS的重要性。在微纳光学和光子学研究中,布鲁塞尔自由大学的研究人员提出了用于光纤到光纤和光纤到芯片连接的锥形光纤和低损耗波导等解决方案
四川德国NanoscribeQX微纳机械系统,咨询纳糯三维科技(上海)有限公司。

作为微纳加工和3D打印领域的带领者,Nanoscribe一直致力于推动各个科研领域,诸如力学超材料,微纳机器人,再生医学工程,微光学等创新领域的研究和发展,并提供优化制程方案。2017年在上海成立的中国子公司纳糯三维科技(上海)有限公司更是加强了全球销售活动,并完善了亚太地区客户服务范围。此次推出的中文版官网在视觉效果上更清晰,结构分类上更明确。首页导航栏包括了产品信息,产品应用数据库,公司资讯和技术支持几大专栏。比较大化满足用户对信息的了解和需求。Nanoscribe中国子公司总经理崔博士表示:“中文网站的发布是件值得令人高兴的事情,我们希望新的中文网站能让我们的中国客户无需顾虑语言障碍,更全方面深入得了解我们的产品以及在科研和工业方面的应用。”
对于光纤上打印的SERS探针,研究人员必须克服几个制造上的挑战。首先,他们设计了一个定制的光纤支架,可以在光纤的切面上打印。然后,打印的物体必须与光纤的重点部分完全对齐,以激发制造的拉曼热点。剩下的一个挑战,特别是对于像单体阵列这样的丝状结构,是对可能倾斜的基材表面的补偿。光纤倾斜的基材表面导致SERS活性微结构的产量很低。为了推动光学领域的创新以及在医疗设备的应用和光学传感的发展,例如光纤SERS探头,Nanoscribe近期推出了新的3D打印系统QuantumXalign。凭借其专有的在光纤上的打印设置和在所有空间方向上的倾斜校正,新的3D打印系统可能已经为在光纤上打印SERS探针的挑战提供了答案,并为进一步改进和新的创新奠定了基础。
纳米尺度结构制造,咨询纳糯三维科技(上海)有限公司。

Nanoscribe双光子灰度光刻(2GL®)是一种用于生成2.5D拓扑的新型增材制造技术。通过这种技术,在扫描一层的情况下,可以打印离散和准确的步骤以及基本连续的拓扑,从而缩短了打印时间。2GL是无掩膜灰度光刻技术家族的新成员,其使用功率调节激光来塑造微纳米结构功能器件的高度轮廓。双光子灰度光刻(2GL®)是一项突破性的创新技术,将灰度光刻的优势与双光子聚合(2PP)的精度和灵活性相结合。光学元件如何对准并打印到光子芯片上?打印对象的 3D 对准技术是基于具有高分辨率 3D 拓扑绘制的共聚焦单元。 为了精确对准光子芯片上的光学元件,智能软件算法会自动识别预定义的标记和拓扑特征,以确定芯片上波导的确切位置和方向。 然后将虚拟坐标系设置到波导的出口,使其光轴和方向完美对准。 根据该坐标系打印的光学元件可确保比较好的光学质量并比较大限度地减少耦合损耗。 该项技术可以利用自由空间微光耦合 (FSMOC) 实现高效的光耦合。Nanoscribe是德国高精度增材制造系统的先驱。湖北德国Nanoscribe微机械
使用Nanoscribe的Photonic Professional系列打印系统制作的微流控元件可以完全嵌入进预制的二维微流道系统。实验室Nanoscribe生物医学
Nanoscribe的技术在多个领域都有广泛应用。在光子学领域,它可以制造光子晶体、超颖材料、激光分布回馈术(DFB Lasers)等。在微光学领域,它可以制造微光学器件和整合型光学。在微流道技术领域,它可以应用于生医芯片系统、物质研究开发与分析以及三维基础结构等方面。在生命科学领域,Nanoscribe的技术可以应用于细胞外数组结构、干细胞分离术、细胞成长研究、细胞迁移研究以及组织工程等方面。此外,Nanoscribe的技术还可以制造游泳microbots,用于精确高效地将药物送至身体的目标区域,以及制作极小的手术工具,用于显微外科手术。
实验室Nanoscribe生物医学