真空镀膜:离子镀膜法:目前比较常用的组合方式有:射频离子镀(RFIP)。利用电阻或电子束加热使膜材气化;依靠射频等离子体放电使充入的真空Ar及其它惰性气体、反应气体氧气、氮气、乙炔等离化。这种方法的特点是:基板温升小,不纯气体少,成膜好,适合镀化合物膜,但匹配较困难。可应用于镀光学器件、半导体器件、装饰品、汽车零件等。此外,离子镀法还包括有低压等离子体离子镀,感应离子加热镀,集团离子束镀和多弧离子镀等多种方法。真空镀膜的操作规程:易燃有毒物品要妥善保管,以防失火中毒。广东钛金真空镀膜
真空镀膜:电子束蒸发可以蒸发高熔点材料,比起一般的电阻加热蒸发热效率高、束流密度大、蒸发速度快,制成的薄膜纯度高、质量好,厚度可以较准确地控制,可以普遍应用于制备高纯薄膜和导电玻璃等各种光学材料薄膜。电子束蒸发的特点是不会或很少覆盖在目标三维结构的两侧,通常只会沉积在目标表面。这是电子束蒸发和溅射的区别。常见于半导体科研工业领域。利用加速后的电子能量打击材料标靶,使材料标靶蒸发升腾。较终沉积到目标上。上海UV光固化真空镀膜只要镀上一层真空镀膜,就能使材料具有许多新的、良好的物理和化学性能。
PECVD一般用到的气体有硅烷、笑气、氨气等其他。这些气体通过气管进入在反应腔体,在射频源的左右下,气体被电离成活性基团。活性基团进行化学反应,在低温(300摄氏度左右)生长氧化硅或者氮化硅。氧化硅和氮化硅可用于半导体器件的绝缘层,可有效的进行绝缘。PECVD生长氧化硅薄膜是一个比较复杂的过程,薄膜的沉积速率主要受到反应气体比例、RF功率、反应室压力、基片生长温度等。在一定范围内,提高硅烷与笑气的比例,可提供氧化硅的沉积速率。在RF功率较低的时候,提升RF功率可提升薄膜的沉积速率,当RF增加到一定值后,沉积速率随RF增大而减少,然后趋于饱和。在一定的气体总量条件下,沉积速率随腔体压力增大而增大。PECVD在低温范围内(200-350℃),沉积速率会随着基片温度的升高而略微下降,但不是太明显。
LPCVD工艺在衬底表面淀积一层均匀的介质薄膜,在微纳加工当中用于结构层材料、绝缘层、掩模材料,LPCVD工艺淀积的材料有多晶硅、氮化硅、磷硅玻璃。不同的材料淀积采用不同的气体。LPCVD反应的能量源是热能,通常其温度在500℃-1000℃之间,压力在0.1Torr-2Torr以内,影响其沉积反应的主要参数是温度、压力和气体流量,它的主要特征是因为在低压环境下,反应气体的平均自由程及扩散系数变大,膜厚均匀性好、台阶覆盖性好。目前采用LPCVD工艺制作的主要材料有:多晶硅、单晶硅、非晶硅、氮化硅等。真空镀膜镀的薄膜纯度高。
真空镀膜的方法:溅射镀膜:溅射镀膜是指在真空室中,利用荷能粒子轰击靶表面,使靶材的原子或分子从表面发射出来,进而在基片上沉积的技术。在溅射镀钛的实验中,电子、离子或中性粒子均可作为轰击靶的荷能粒子,而由于离子在电场下易于加速并获得较大动能,所以一般是用Ar+作为轰击粒子。与传统的蒸发镀膜相比,溅射镀膜可以在低温、低损伤的条件下实现高速沉积、附着力较强、制取高熔点物质的薄膜,在大面积连续基板上可以制取均匀的膜层。溅射镀膜被称为可以在任何基板上沉积任何材料的薄膜技术,因此应用十分普遍。真空镀膜在钢材、镍、铀、金刚石表面镀钛金属薄膜,提高了钢材、铀、金刚石等材料的耐腐蚀性能。韶关光学真空镀膜
真空镀膜机类金刚石薄膜通过蒸馏或溅射等方式在塑件表面沉积各种金属和非金属薄膜。广东钛金真空镀膜
ALD是一种薄膜形成方法,其中将多种气相原料(前体)交替暴露于基板表面以形成膜。与CVD不同,不同类型的前驱物不会同时进入反应室,而是作为单独的步骤引入(脉冲)和排出(吹扫)。在每个脉冲中,前体分子在基材表面上以自控方式起作用,并且当表面上不存在可吸附位时,反应结束。因此,一个周期中的产品成膜量由前体分子和基板表面分子如何化学键合来定义。因此,通过控制循环次数,可以在具有任意结构和尺寸的基板上形成高精度且均匀的膜。广东钛金真空镀膜