根据经验,在电路的总电源原理图中,设计原理图时把这些电容画在一起,因为是同一个网络,而在设计实际PCB时,这些电容分别放在各自的ic上。电容越大,信号频率越高,电容的交流阻抗越小。电源(或信号)或多或少会叠加一些交流高频和低频信号,对系统不利。IC电源的引脚与地之间并联放置电容,一般是为了滤除对系统不利的交流信号。10uf和0.1uf的电容配合使用,使电源(或信号)对地的交流阻抗在很宽的频率范围内很小,这样可以更干净地滤除交流分量。MLCC成为使用数量较多的电容。上海高压贴片电容
钽电容器:优点:体积小,电容大,形状多样,寿命长,可靠性高,工作温度范围宽。缺点:容量小,价格高,耐电压电流能力弱。应用:通信,航空航天,工业控制,影视设备,通信仪表1.它也是一种电解电容器。钽被用作介质,不像普通的电解电容使用电解质。钽电容不需要像普通电解电容那样用镀铝膜的电容纸绕制,几乎没有电感,但这也限制了它的容量。3354我们在大容量,但是需要低ESL,所以选择钽电容器。2.由于钽电容器中没有电解液,所以非常适合在高温下工作。3354需要一些温度范围比较宽的场景。3.钽电容器的工作介质是在金属钽表面形成的一层非常薄的五氧化二钽薄膜。这层氧化膜。电介质与电容器的一端集成在一起,不能单独存在。所以单位体积的工作电场强度非常高,电容特别大,也就是比容量非常高,所以特别适合小型化。3354集成度比较高的场景,铝电解电容占用面积比较大,陶瓷电容容量不足。无锡片式陶瓷电容品牌电容的本质:两个相互靠近的导体,中间夹一层不导电的绝缘介质,这就构成了电容器。
MLCC的主要材料和重要技术及LCC的优点:1、材料技术(陶瓷粉料的制备)现在MLCC用陶瓷粉料主要分为三大类(Y5V、X7R和COG)。其中X7R材料是各国竞争较激烈的规格,也是市场需求、电子整机用量较大的品种之一,其制造原理是基于纳米级的钛酸钡陶瓷料(BaTiO3)改性。日本厂家(如村田muRata)根据大容量(10μF以上)的需求,在D50为100纳米的湿法BaTiO3基础上添加稀土金属氧化物改性,制造成高可靠性的X7R陶瓷粉料,较终制作出10μF-100μF小尺寸(如0402、0201等)MLCC。国内厂家则在D50为300-500纳米的BaTiO3基础上添加稀土金属氧化物改性制作X7R陶瓷粉料,跟国外先进粉体技术还有一段差距。
钽电容的性能优良,是一种体积小、电容大的产品。在电源滤波器、交流旁路和其他应用中,几乎没有竞争对手。钽电解电容器主要用于滤波、储能和转换、标记旁路、耦合和去耦,以及作为时间常数元件等。因为它们可以储电,可以充放电。在应用中,应注意其性能特点。正确使用有助于充分发挥其功能,如考虑产品的工作环境和加热温度,采取降额使用等措施,使用不当会影响产品的使用寿命。比如3354USB接口输出,降额后耐压达到5V,集成度比较高。当陶瓷电容器不能满足高耐压和大容量的要求时,我们不得不选择钽电容器。陶瓷的储能效果并不能按照并联的电容来等效,达到同样效果的成本也很高。MLCC(Multi-layer Ceramic Capacitors)是片式多层陶瓷电容器英文缩写。
陶瓷电容器品种繁多,外形尺寸相差甚大从0402(约1×0.5mm)封装的贴片电容器到大型的功率陶瓷电容器。按使用的介质材料特性可分为Ⅰ型、Ⅱ型和半导体陶瓷电容器;按无功功率大小可分为低功率、高功率陶瓷电容器;按工作电压可分为低压和高压陶瓷电容器;按结构形状可分为圆片形、管型、鼓形、瓶形、筒形、板形、叠片、独石、块状、支柱式、穿心式等。陶瓷电容器的温度特性应用陶瓷电容器首先要注意的就是其温度特性;不同材料的陶瓷介质,其温度特性有极大的差异。铝电解电容器由于在负荷工作过程中电解液不断修补并增厚阳极氧化膜(称为补形效应),会导致电容量的下降。广东高频滤波电容规格
钽电容的容值的温度稳定性比较好。上海高压贴片电容
I类陶瓷电容器按照美国电工协会(EIA)的标准,是C0G(数字0,不是字母O,部分文件笔误COG)或NP0(数字0,不是字母O,部分文件笔误NPO),以及中国标准CC系列等各类陶瓷介质(温度系数为030ppm/),极其稳定,温度系数极低,不会出现老化现象和损耗因子。这种介质非常适用于高频(特别是用于工业高频感应加热、高频无线传输等应用的高频电力电容器)、超高频以及对电容和稳定性有严格要求的定时和振荡电路的工作环境。这种介质电容的缺点就是电容不能做得很大(因为介电系数比较小)。通常情况下,1206表贴C0G介质电容的电容范围为0.5pf至0.01f。上海高压贴片电容