商业脂质体产品,包括Visudyne和AmBisome,使⽤这种⽅法制造。MLV悬浮液在⾼压下通过⼀个狭窄的间隙,通过剪切⼒、湍流和速度梯度产⽣的流体空化⽽被分解,然后重新排列成更⼩的脂质体。颗粒⼤⼩和粒度分布由均质过程的参数决定,如压⼒、处理周期、阀⻔和冲击设计、流速等;它们还受到样品性质的影响,包括散装介质的组成和粘度以及颗粒的初始尺⼨分布。不断增加的压⼒和处理循环会降低颗粒尺⼨和多分散性指数(PDI),但也会导致封装效率降低。脂质体制备方法:原位制备脂质体。宁夏microbubble脂质体载药
脂质体中辅助脂质中性脂也经常被用作阳离子脂质体的助手。例如,已知中性脂质1,2-二油基-asn-甘油-3-磷酸乙醇胺(DOPE)在胞吞作用后参与内体逃逸,胆固醇(一种内源性脂质)可以插入脂质双层之间以增加纳米颗粒的刚性。为了增加体内稳定性,一种非常普遍的方法包括插入聚乙二醇(PEG)偶联的中性脂质,对纳米颗粒进行聚乙二醇化。此外,中性辅助性脂质,如DOPE已被用于提高阳离子脂质体的递送效率。DOPE提高核酸递送效率的生物物理机制仍在研究中。**近的一项研究报道,含有DOPE的脂质单层呈现不规则的豆状结构域,而缺乏DOPE的脂质单层呈现均匀的表面。除DOPE外,其他中性脂质,包括N-十二烷酰基肌氨酸,已被报道可提高阳离子脂质体的基因递送效率。中国香港脂质体载药实验脂质体质量控制的重要性。
酸性环境(pH值2.0-4.0)通常⽤于产⽣⽤于活***物装载的跨膜pH梯度。在37℃和pH2.0条件下,SM/Chol脂质体(55/45,mol/mol)的⽔解速率⽐DSPC/Chol脂质体慢约100倍。此外,含有SM/Chol的脂质体表现出比较好的药代动⼒学特性,即增加循环时间并增强药物向靶组织的递送。胆固醇(Chol)是脂质体双分⼦层的另⼀个主要成分,⼏乎可以⽤于所有的商业产品。Chol的加⼊可以促进脂链的堆积和双分⼦层的形成,调节膜的流动性/刚性,并进⼀步影响药物释放、脂质体的稳定性和胞外分泌动⼒学。对于Shingrix(带状疱疹疫苗,含有糖蛋⽩E抗原和AS01B脂质体佐剂系统)的产物,Chol可以避免QS21(AS01B佐剂系统中的免疫增强剂之⼀)以2:1的⽐例(Chol:QS21,w/w)⽔解。对于AmBisome的产物,与⾮甾醇相⽐,Chol降低了脂质体制剂的毒性。Chol对双分⼦层性质的影响是浓度依赖性的。据报道,低浓度(2.5mol%)和⾼浓度(>30mol%)的Chol对脂质双分⼦层的性质影响不⼤。5<Cholmol%<30的Chol的“冷凝效应”或“有序效应”导致颗粒⼤⼩从220nm逐渐增⼤到472nm,膜的流动性降低,药物释放减少。除了Chol,其他与Chol结构相似的甾醇,如⻩体酮、⻨⻆甾醇和⽺⽑甾醇,也被研究⽤于调节膜的刚性和稳定性。
siRNA脂质体
RNA干扰(RNAi)途径允许siRNA和miRNAs负向调节蛋白表达。siRNA是21~23对核苷酸组成的双链RNA,可诱导同源靶mRNA沉默。为了发挥作用,双链siRNA分裂成两个单链RNA:乘客链和引导链。乘客链被argonaute-2蛋白降解,而引导链则被纳入RNAi诱导的沉默复合体中,该复合体结合与引导链互补的mRNA并将其切割。siRNA似乎具有***多种疾病的巨大潜力,因为它们可以很容易地下调各种靶mRNA,而不考虑它们的位置(即在细胞核或细胞质中),并且它们的特异性结合表明它们比传统化学药物诱导的副作用更少。作为一种新型的基于核酸的***策略,siRNA***与传统的化学药物相比具有许多优势。然而,为了促进基于siRNA的***方法的发展,必须克服一些挑战,包括需要识别适当的靶基因和开发优化的递送系统。许多研究人员试图利用阳离子脂质体提高siRNA的细胞递送和基因沉默效率。例如,由DC-6-14、DOPE和胆固醇组成的阳离子脂质体被用于递送萤火虫荧光素酶特异性的siRNA。当阳离子脂质体与siRNA持续剧烈搅拌混合时,转染效率提高,说明将siRNA加载到阳离子脂质体上的方法可以调节转染效率。siRNA脂丛的***应用因靶蛋白而异。 由于在巨噬细胞上发现了甘露糖受体, 因此甘露糖已被用于修饰阳离子脂质体以靶向巨噬细胞递送。
由于阿⽶卡星在⼄醇中的溶解度有限,在使⽤⼄醇输注制备脂质体过程中,阿⽶卡星转移到半可溶性的凝聚状态,被包裹在脂质体的核⼼内部。令⼈惊讶的是,获得了较⾼的包封效率(在优化的制备参数下,游离药物为5.2%)和药脂⽐(~0.7)。由于其多阳离⼦性质,被包封的药物在脂质体膜上表现出低通透性,使脂质体在⾎液循环过程中保持稳定。阿糖胞苷(DepoCyte)、**(DepoDur)和布⽐卡因(Exparel)⽔溶液被包裹在MVLs 的腔室中(由94%的⽔腔和4%的脂质组成);因此,⼩体积的脂质体悬浮液中含有⼤量药物。为了进⼀步提⾼包封效率和缓释,可采⽤将药物化合物从单质⼦⽆机酸盐转化为⼆质⼦或三质⼦⽆机酸盐(如硫酸盐盐或磷酸盐)和多醇有机酸共包封的⽅法。Arg-Gly-Asp (RGD)肽修饰的脂质体增强核酸靶向整合素受体表达细胞传递的能力。厦门脂质体载药品牌
脂质体中的相变温度是指脂质双分子层中脂质分子从一个状态转变为另一个状态所需的温度。宁夏microbubble脂质体载药
5.荧光标记的定量分析:通过测量荧光信号的强度,可以对载药脂质体中药物的含量进行定量分析。这对于确定药物的释放量、药物在体内的浓度以及载药脂质体的稳定性等方面至关重要。荧光标记可以提供一个快速、准确的定量检测方法,为药物输送系统的研究和应用提供了便利。6.探索药物的药代动力学:荧光标记的载药脂质体可以用于研究药物的药代动力学,包括药物的吸收、分布、代谢和排泄过程。通过监测荧光信号的变化,可以跟踪药物在体内的动态变化,从而更好地理解药物的药效学特性。7.提高***效果:荧光标记的载药脂质体还可以用于提高***效果。通过荧光标记,可以实现对***部位的精确定位和定量释放,从而提高药物的局部浓度和***效果,减少对健康组织的损伤和副作用。8.研究药物的靶向性:荧光标记的载药脂质体可以用于研究药物的靶向性。通过将靶向配体或抗体与荧光标记的载药脂质体结合,可以实现对靶向部位的定位和跟踪,从而更好地了解药物的靶向性和作用机制。宁夏microbubble脂质体载药