积分球的基本工作原理:光线由输入孔入射后,在积分球内部被均匀地反射及漫射,并在球面上形成均匀的光强分布,输出孔所得到的光线为非常均匀的漫射光束。而且入射光的入射角度、空间分布、以及极性都不会对输出的光束强度和均匀度造成影响。同时因为光线经过积分球内部的均匀分布后才射出,因此积分球也可当作一个光强衰减器,输出强度与输入强度比大约为:光输出孔面积/积分球内部的表面积。对于积分球内壁上的辐亮度必须考虑多次反射与开口处通量损失。若以传播距离不同偏轴半径光强度与同距离时轴心点所接收的光强度的比值表示纵坐标,以光积分球出口的垂直距离为横坐标。可以看出积分球出射的光斑随着距离的增加而均匀,首先是偏轴半径的光强与中心光强相差的增大,然后随着距离越来越大,光斑又趋于均匀。积分球还可以用于光源的校准,通过将光源放置在球内,可以消除光源的方向性。D55光源辐射定标测试范围
这种辐射度交换一次又一次地发生,直到它在空间上整合。入射到整个积分球体表面的总通量的n次反射的交换可以用幂级数来建模,并简化为一个简单的辐射方程:式中Φ为入射到积分球内的光,As为积分球壁面积,p为积分球壁反射率,f为开口端口面积占比。简化的辐射度方程可用于模拟光和LED测量应用的光学效率。这些应用包括用于激光表征的光学衰减,进入光纤或安装在积分球体上的探测器表面的通量,用于图像传感器的光谱辐射度和用于非成像光学传感传感器的光谱辐照度,或积分球体应用所需的其他许多辐射和光度参数。光谱辐照度Helios标准光源供应积分球的设计需要考虑光源的功率和光谱分布。
测量与光束空间性质无关的光功率的积分球。常用的积分球结构测色仪有 d/8结构和 d/0结构。d/8结构色度仪有两种测量模式 SCI和 SCE;(详见此处),利用 SCI进行颜色测量可以有效地消除物体表面纹理对颜色测量的影响,从而获得物体的真实色彩特征。除了测量的目的,积分球还可以均匀照射一个装置。这在测试数字成像装置时非常重要(例如CCD阵列)。理想情况下,在积分球内表面的涂层在需要的波长范围内都具有很高的反射率,并且反射为漫反射。如果积分球和小端口处的光学损耗很小,多次反射会导致在积分球内部具有很高的光强,从而具有很高的光学效率,即使积分球比光源和探测器的尺寸都大。
积分球辐射度,入射到漫射表面上的光通过反射产生一个虚拟光源。从表面发出的光较好用它的辐射度来描述,即每单位立体角的通量密度。辐射度是一个重要的工程量,因为它可以预测光学系统在观察被照射表面时所能收集到的光通量的数量。对于积分球,辐射度推导考虑了入射到积分球内的光、积分球壁反射率、积分球表面积、光进行的多次表面反射以及通过开口端口的损失。进入积分球体的光通过初始反射几乎完全漫射。离开表面的一小部分光到达另一个表面区域并被漫反射,依此类推。这种辐射度交换一次又一次地发生,直到它在空间上整合。积分球为科学家提供了一个强大的工具,助力人类探索自然界的规律。
但要制作出这样的积分球并不容易。需要精确的几何设计和材料选择,以确保光线的完美散射。而且,积分球还需要经过一系列的测试和校准,才能确保其性能达到要求。那么,积分球在我们的生活中有哪些应用呢?它在照明领域的应用非常普遍。例如,测试灯具的光效和色温。在显示领域,积分球用于测量屏幕亮度和对比度。在科研领域,积分球更是不可或缺的工具,用于测量各种光学参数和性能指标。看到这里,你是否对积分球产生了浓厚的兴趣?下次当你看到一个看似普通的球体时,不妨想一想它背后可能隐藏的神奇原理。因为谁知道呢?它也许就是下一个改变世界的创新!如果你对光学积分球还有更多疑问或想了解更多应用案例,请在评论区留言告诉我!也别忘了分享给你的朋友们哦!积分球还可以用于光学实验中的光传输研究,通过观察球内的光分布,可以研究光的传播规律。Spectra-CT 色温可调Helios标准光源测试仪
通过积分球,可以计算地球表面到地心的温度分布,为地质学研究提供依据。D55光源辐射定标测试范围
便携式高亮度积分球均匀光源,便携式高亮度积分球均匀光源(LS-ISLS20K),积分球均匀光源具有良好的面发光均匀性、郎伯特性等普遍用于各种计量检测单位、光谱亮度计和光谱辐射度计厂家,同时校准和测试相机及光学探测传感器、焦平面阵列传感器及多光谱遥感传感器的理想选择。LS-ISLS20K便携式高亮度积分球均匀光源是采用了一体化PTFE铸模球体,反射率高达98%以上,积分球均匀光源系统主要由积分球主体结构、光源和系统控制器、带强度标定系统组成。LS-ISLS20K便携式高亮度积分球均匀光源在校准光亮计、光谱辐射计具备大动态范围、线性度高,采样了光源输出光强可调、出射光阑孔可调节、灯的数量控制等方法来实现积分球光源输出亮度的调节范围。D55光源辐射定标测试范围