1.智能温度检测算法本算法根据刀头激发过程种的多种数据不断产生的变化,利用AI技术进行分类、识别、训练从而进行温度的精细监测,当温度超过限值时发出预警,并引导医生采取解决措施,以减少因刀头过热而导致的组织热损伤。2.金属器械碰撞检测算法本算法通过分析刀头在操作过程中的多种数据变化,利用AI算法技术进行数据的识别,分类,训练检测出刀头与其他钳子碰撞的信号特征并快速识别。当发生碰撞时能量快速回收直到碰撞结束并通过屏幕提示该碰撞事件,提高术中超声刀使用的安全性,降低刀头断裂风险。3.组织切断检测算法本算法通过分析刀头在操作过程中的多种数据变化,利用AI算法技术进行数据的识别,分类,训练。当组织被切断时,算法通过声音提示操作者,同时降低能量输出,降低钳口的摩擦损耗,降低刀头温度,提高切割的准确性。 超声刀也可以单独用于出血点的止血。京津冀集采中标超声刀主机
迈入大数据与AI驱动的智能医疗时代,我们正迈入一个全新的智能时代大数据驱动、专科精细化、AI智能加持的先进医疗时代,科技的每一次进步都极大地赋能医疗领域,推动医疗技术不断革新,世格赛思紧跟技术前沿推出:世格赛思G600AI超声能量主机不仅是技术创新的结晶,更是医疗实践中赋能医生、造福患者的重要工具。其强大的NPU(神经网络处理单元)实现每秒高达3.6TOPs的计算能力,能够实时监测手术过程中的数据变化,利用AI技术提高手术的精细性和安全性。肝胆外科超声刀设备“超声刀”虽然名字里有“刀”,但并不是传统意义的手术刀。而是由主机、换能器、超声刀头和脚踏开关组成。
“在1985年,德国医生ErichMühe成功实施了世界上例腹腔镜胆囊切除术,从此开启了微创手术的新纪元。自那时起,医疗技术在微创手术领域不断飞速发展,推动了医学领域的性进步。”超声刀与微创手术技术的历史演进从20世纪初超声能量手术器械的理论基础建立,到基于超声能量器械的微创手术技术初步探索,再到超声手术刀的广泛应用,微创手术技术已经走过近一个世纪的研究与发展历程。如今,超声刀已成为对抗复杂手术挑战、保护患者生命安全的关键器械。
超声骨刀只会对特定硬度的骨组织进行破坏,比如说微创脊柱手术、开颅手术、骨折修复术等,都能够很好的进行手术,而不损坏软组织,什么意思呢?当超声骨刀碰到硬度高的骨组织时,就会进行直接切断,可要是紧挨着的肌肉、神经等都能够做到毫发无伤,不可谓不神奇。超声骨刀比传统的骨科医疗器械相当有优势的,就是不对肌肉和神经等组织造成伤害,无论是多的医生,在手术上操作传统的锯骨刀时,都难以避免可能会产生一定的意外,可能会让锯骨到软组织,而这些问题有了超声骨刀以后就不用再担心了,即使不小心碰到了软组织,也不会造成损伤,增加了手术成功率,也能让患者少受点痛苦,恢复的更快一些。使用超声刀可以进行多种功能操作,包括切割、凝血、抓持及分离,可以有效降低手术中更换器械的频率。
超声刀以55.5kHz的频率通过到头进行机械震荡(50~100μm),将电能转为机械能,使组织蛋白氢链断裂、细胞崩解、蛋白质凝固,极少产生焦痂、烟雾,对机体基本无电生理干扰。在一项92例的急诊LC临床研究中,4例电凝钩组患者因活动性出血和胆总管损伤而中转开腹,超声刀组在手术时间、术中出血量、术后24小时引流量、引流时间、住院时间及中转开腹率均低于电凝钩组。超声刀头温度小,周围导热距离<5μm,对周围重要脏器及组织更为安全,且其工作效果是长久性闭合,术后出血发生概率也大大减小。在粘连水肿严重的坏疽性以及Calot三角解剖不清的急性胆囊炎更具优势。超声刀用于需要控制出血及期望热损伤较小时的软组织切割。肝胆外科超声刀设备
超声软组织切割止血刀的工作原理是利用电致伸缩效应或磁致伸缩效应。京津冀集采中标超声刀主机
人工智能算法1.主机人工智能算法:集成了世格赛思多年的底层技术积累。主机采用NPU处理器(神经网络处理单元),性能媲美小型AI工作站,浮点数据每秒运算能力高达3.6TOPs(3.6万亿次),智能实现不同手术的操作要求。2.组织智能切割算法该智能算法提高了能量的输出精度,提高了切割效率和凝血能力。算法智能识别出不同组织,智能化调整能量输出,以比较低的能量达到比较大的切割效率及凝血能力。3.低温切割控制算法该算法实时监测切割过程的温度变化及组织状态,智能化调整能量输出,以比较低的能量输出达到比较大的切割速度,从而实现手术中刀头温度更低,造成的热损伤更小,提高手术安全性。京津冀集采中标超声刀主机