低温等离子技术,低温等离子技术比较适用于低浓度、小分子废气物的处理,它是继固、液、气这三者之后的第四态,当外加电压至气体着火点电压时,气体击穿,产生一新混合体。之所以成为低温等离子是由于,在放电的过程中虽然电子的温度达到很高,但重粒子温度缺很低,致使整个体系呈现低温状态。光催化技术,光催化技术是适用于低浓度废气物的处理方式之一,它是将TiO2作为催化剂,反应条件比较温和,光解速度较快,光催化的产物:CO2、H2O或其它,它的应用范围比较广,包括醛、酮、氨等有机物废气物,都可利用TiO2进行光催化清理。其主要机理是:催化剂吸收光子,与表面的水反应产生一种比较主要的活性物质,他对光催化的氧化起着决定性作用的羟基自由基(·OH)。还会产生一种活性氧物质(·O,H2O2)。废气处理技术涉及多种物理化学方法,如吸附、喷淋、脱硫等。半导体废气处理大气污染防治设计乙级资质
吸附法,1)直接活性炭吸附法,这种方法设备比较简单、投资较小,它是将涂装线排除的有机废气,经过活性炭的进行吸附,吸附率在90%以上。此方法活性炭达到饱和后无法进行再生,需要对其进行定期更换,方可保证净化效果。更换时会导致装卸、运输等过程中造成二次污染,活性炭成本比较高且饱和活性炭需要专门处理机构处理,处理费用较高,因此其直接活性炭吸附的运行成本相当高。2)吸附—回收法,该法利用过热蒸汽反吹吸附饱和的吸附剂进行脱附再生,蒸汽与脱附出来的有机气体经冷凝、分离,可回收有机液体。该法净化效率较高,但要求提供必要的蒸汽量。另外有机溶剂与水的分离不很彻底,得到的混合液体品质不高,组份较为复杂,这些有机液体无法直接用到生产中,要再采用蒸馏、精馏、萃取等多道程序处理。半导体废气处理大气污染防治设计乙级资质废气处理过程中应注重数据的收集和分析,为优化处理方案提供依据。
生物过滤工艺的影响因素,填料:生物滴滤器中, 生物膜生长在填料的表面, 气态有机物流通于填料之间的空隙。填料比表面积的大小在一定程度上反映了微生物的多少, 孔隙率则影响气体、液体的流速, 而填料层的高度对有机物是否处理完全有着重要意义。营养液:生物滴滤塔中的营养物质,微量元素和缓冲液均匀喷洒在填料上,以提供生物膜中生物菌群生长和繁殖所需的营养物质。挥发性有机物的去除率一定程度上受营养液的流量,氮和磷的含量等的影响。进气:生物滴滤器运行过程中, 气体流量、入口气体浓度的大小都对气体本身的去除效率有着明显的影响。
介绍焚烧工艺工业废气治理汇总,涵盖VOCs处理内容如下:RTO蓄热式焚烧炉,排放自工艺含VOCs的废气进入双槽RTO,三向切换风阀(POPPETVALVE)将此废气导入RTO的蓄热槽(EnergyRecoveryChamber)而预热此废气,含污染的废气被蓄热陶块渐渐地加热后进入燃烧室(CombustionChamber),VOCs在燃烧室被氧化而放出热能于第二蓄热槽中之陶块,用以减少辅助燃料的消耗。陶块被加热,燃烧氧化后的干净气体逐渐降低温度,因此出口温度略高于RTO入口温度。三向切换风阀切换改变RTO出口/入口温度。如果VOCs浓度够高,所放出的热能足够时,RTO即不需燃料。例如RTO热回收效率为95%时,RTO出口只较入口温度高25℃而已。废气处理不仅是企业的义务,也是公民的责任,每个人都应为环境保护贡献力量。
活性炭吸附工艺的优缺点,优点:适用于低浓度的各种污染物;活性炭价格不高,能源消耗低,应用起来比较经济;通过脱附冷凝可回收溶剂有机物;应用方便,只与同空气相接触就可以发挥作用;活性炭具有良好的耐酸碱和耐热性,化学稳定性较高。缺点:吸附量小,物理吸附存在吸附饱和问题,随着吸附剂的消耗,吸附能力也变弱,使用一段时间后可能会出现吸附量小或失去吸附功能;吸附时,存在吸附的专一性问题,对混合气体,可能吸附性会减弱,同时也存在分子直径与活性炭孔径不匹配,造成脱附现象;废气处理涉及到气体处理、排放控制、再循环利用等方面。河北液氮废气处理
废气处理工程需要综合考虑成本、效率、可行性等因素做出合理的决策。半导体废气处理大气污染防治设计乙级资质
活性炭吸附工艺原理及流程,活性炭纤维吸附有机废气是当今世界上较为先进的技术之一,活性炭纤维比颗粒状活性炭具有更大的吸附容量和更快的吸附动力学性能,活性炭吸、脱附工艺流程。活性炭吸附工艺影响因素。活性炭净化空气的物理吸附:分子直径大于孔的直径,由于空间位阻,分子不能入孔,因此不吸附;分子直径等于孔的直径,吸附剂的捕捉力很强,非常适合低浓度吸附;分子直径小于孔的直径,孔内发生毛细管冷凝,吸附容量大;分子直径远小于孔的直径,吸附分子很容易解吸,解吸速率高,低浓度下的吸附量较小。半导体废气处理大气污染防治设计乙级资质