SiP主流的封装结构形式,SiP主流的封装形式有可为多芯片模块(Multi-chipModule;MCM)的平面式2D封装,2D封装中有Stacked Die Module、Substrate Module、FcFBGA/LGA SiP、Hybrid(flip chip+wirebond)SiP-single sided、Hybrid SiP-double sided、eWLB SiP、fcBGA SiP等形式;2.5D封装中有Antenna-in-Package-SiP Laminate eWLB、eWLB-PoP&2.5D SiP等形式;3D结构是将芯片与芯片直接堆叠,可采用引线键合、倒装芯片或二者混合的组装工艺,也可采用硅通孔技术进行互连。SiP封装为芯片提供支撑,散热和保护,同时提供芯片与基板之间的供电和机械链接。河北COB封装
突破「微小化」竞争格局,凭借异质整合微小化优势,系统级封装能集成不同制程技术节点 (technology node),不同功能、不同供货商,甚至是不同半导体原材料的组件,整体可为产品节省约30-40%的空间,也能依据需求客制模块外型并一定程度简化系统主板设计,让主板、天线及机构的设计整合上更加有弹性。同时,相较于IC制程的开发限制,系统整合模块可以在系统等级功能就先进行验证与认证,加速终端产品开发,集中系统产品研发资源。 SiP技术是全球封测业者较看重的焦点,系统级封装(SiP)技术的突破正在影响产业供应链、改变竞争格局。云茂电子从Wi-Fi模块产品就开始进行布局、站稳脚步,积累多年在射频、穿戴式装置等产品的丰富制程经验,透过「一站式系统级封装服务」协助客户实现构想。 深圳陶瓷封装方案SiP 封装优势:封装面积增大,SiP在同一个封装种叠加两个或者多个芯片。
应用领域,SiP技术的应用领域非常普遍,包括但不限于:智能手机和平板电脑:SiP技术使得这些设备能够在有限的空间内集成更多的功能,如高性能处理器、内存和传感器。可穿戴设备:支持可穿戴设备的小型化设计,同时集成必要的传感器和处理能力。物联网(IoT)设备:为IoT设备提供了一种高效的方式来集成通信模块、处理器和其他传感器。汽车电子:随着汽车逐渐变得“更智能”,SiP技术在汽车电子中的应用也在增加,用于控制系统、导航和安全特性等。尽管SiP技术有许多优势,但也面临一些挑战:热管理:多个功率密集型组件集成在一起可能导致热量积聚。设计复杂性:设计一个SiP需要多学科的知识,包括电子、机械和热学。测试和验证:集成的系统可能需要更复杂的测试策略来确保所有组件的功能。
光电器件、MEMS 等特殊工艺器件的微小化也将大量应用 SiP 工艺。SiP 发展的难点随着 SiP 市场需求的增加,SiP 封装行业的痛点也开始凸显,例如无 SiP 行业标准,缺少内部裸片资源,SiP 研发和量产困难,SiP 模块和封装设计有难度。由于 SiP 模组中集成了众多器件,假设每道工序良率有一点损失,叠乘后,整个模组的良率损失则会变得巨大,这对封装工艺提出了非常高的要求。并且 SiP 技术尚属初级阶段,虽有大量产品采用了 SiP 技术,不过其封装的技术含量不高,系统的构成与在 PCB 上的系统集成相似,无非是采用了未经封装的芯片通过 COB 技术与无源器件组合在一起,系统内的多数无源器件并没有集成到载体内,而是采用 SMT 分立器件。SiP 实现是系统的集成。
电子封装sip和sop的区别,在电子封装领域,SIP和SOP各有其独特之处。SIP,即系统级封装,允许我将多个芯片或器件整合到一个封装中,从而提高系统集成度并减小尺寸。而SOP,即小型外廓封装,是一种紧凑的封装形式,适用于表面贴装,尤其适用于高密度、小尺寸的电子设备。在选择封装形式时,我会综合考虑应用需求。如果需要高度集成和减小尺寸,SIP是理想选择;若追求小型化且引脚数量适中,SOP则更合适。此外,我还会考虑封装材料和工艺、引脚排列等因素,以确保选择较适合的封装形式来满足我的项目需求。SiP是理想的解决方案,综合了现有的芯核资源和半导体生产工艺的优势,降低成本,缩短上市时间。河北COB封装
SIP工艺流程划分,SIP封装制程按照芯片与基板的连接方式可分为引线键合封装和倒装焊两种。河北COB封装
SIP类型,从目前业界SIP的设计类型和结构区分,SIP可分为以下几类。2D SIP,2D封装是指在基板的表面水平安装所有芯片和无源器件的集成方式。以基板(Substrate)上表面的左下角为原点,基板上表面所处的平面为XY平面,基板法线为Z轴,创建坐标系。2D封装方面包含FOWLP、FOPLP和其他技术。物理结构:所有芯片和无源器件均安装在基板平面,芯片和无源器件与XY平面直接接触,基板上的布线和过孔位于XY平面下方。电气连接:均需要通过基板(除了极少数通过键合线直接连接的键合点)。河北COB封装
由于物联网“智慧”设备的快速发展,业界对能够在更小的封装内实现更多功能的系统级封装 (SiP) 器件的需求高涨,这种需求将微型化趋势推向了更高的层次:使用更小的元件和更高的密度来进行组装。 无源元件尺寸已从 01005 ( 0.4 mm× 0.2 mm) 缩小到 008004( 0.25 mm×0.125 mm) ,细间距锡膏印刷对 SiP 的组装来说变得越来越有挑战性。 对使用不同助焊剂和不同颗粒尺寸锡粉的 3 种锡膏样本进行了研究; 同时通过比较使用平台和真空的板支撑系统,试验了是否可以单独使用平台支撑来获得一致性较好的印刷工艺;并比较了激光切割和电铸钢网在不同开孔尺寸下的印刷结果。在当前...