积分:1.理想积分球原理,理想积分球的条件:A、积分球地内表面为一完整地几何球面,半径处处相等;B、球内壁是中性均匀漫射面,对于各种波长的入射光线具有相同的漫反射比;C、球内没有任何物体,光源也看作只发光而没有实物的抽象光源。2.影响积分球测量精度的因素:A、球内壁是均匀的理想漫射层,服从朗伯定则;B、球内壁各点的反射率相等;C、球内壁白色涂层的漫射是中性的;D、球半径处处相等,球内除灯外无其他物体存在;E、窗口材料是中性的,其E符合照度的余弦定则,实际情况与理想条件不符合会带来测量误差,故需修正。积分球不仅提高了光源的均匀性,也降低了光源对实验结果的干扰。手机摄像头Helios标准光源使用方法
积分球(Integrating sphere)又称为光通球、光度球,是一个中空的完整球壳。积分球多由金属资料制成,内壁涂白色高漫反射层(通常是氧化镁或硫酸钡),且球内壁各点漫射均匀。也有积分球采用高反射高分子资料制成,例如Spectralon资料。光源在球壁上任意一点上发生的光照度是由屡次反射光发生的光照度叠加而成的。这样,进入积分球的光经过内壁涂层屡次反射,在内壁上构成均匀照度。积分球的详细介绍,积分球常用于测验光源的光通量、色温、光效等参数,也可用于丈量物体的反射率和透过率等。均匀光源测试仪通过积分球,可以计算地球表面到地心的温度分布,为地质学研究提供依据。
技术特性:积分球的基本原理:积分球又称为光通球,是一个中空的完整球壳。内壁涂白色漫反射层,且球内壁各点漫射均匀。光源S在球壁上任意一点 B上产生的光照度是由多次反射光产生的光照度叠加而成的。由积分学原理可得,球面上任意一点B的光照度为:公式(1)中,E1 为光源S直接照在 B点上的光照度,E1的大小不仅与B点的位置有关,也与光源在球内的位置有关。如果在光源S和B点间放一挡屏,挡去直接射向 B点的光,则E1=0,因而在 B点的光照度为:公式(1)公式(2)中,R为积分球半径、p为积分球内壁反射率。R和p均为常数,因此在球壁上任意位置的光照度E(挡去直接光照后)与灯的光通量 中成正比。通过测量球壁窗口上的光照度E,就可求出光源的光通量 Ф。
空间集成,对实际积分球内部辐射度分布的精确分析取决于入射光通量的分布、实际积分球设计的几何细节和积分球涂层的反射率分布函数,以及安装在开口端口或积分球内部的每个设备的表面。较佳空间性能的设计准则是基于较大限度地提高涂层反射率和相对于所需的开口端口和系统设备的积分球直径。反射率和开口端口比例对空间积分的影响可以通过考虑达到入射到积分球表面的总通量所需的反射次数来说明。经过n次反射后产生的辐射度可以与稳态条件下相比较。积分球的设计需要考虑光源的功率和光谱分布。
积分球内部涂层的选择:在选择积分球时,漫反射涂层的选择非常重要,漫反射涂层或材料的反射率——越高越好。“更高的反射率意味着光在被吸收之前在球体内有更多的反射,”Labsphere销售和营销副总裁Peter Weitzman说,“因此集成度更好,测量精度也更好。”漫反射涂料喷涂方式通常包括喷雾式或粉末式。积分球内部喷涂哪种漫反射涂层,取决于系统使用环境,以及使用积分球测试的波段范围。针对极l端条件或者小积分球,烧结聚四氟乙烯(PTFE或Teflon)提供非常好的性能。例如Labsphere的Spectralon EPV漫反射材料可用于深紫外、极l端物理和真空中。典型的硫酸钡涂层,尽管也可在近紫外和红外使用,但主要用于可见光波段范围。镀金漫反射涂层主要应用于NIR-MIR波段范围。每种漫反射涂层的较佳使用波段范围和概述详见生产商的网站发布内容。积分球与材料科学结合,可以研究球状材料的力学性能,如篮球、高尔夫球等。低亮度辐射定标测试
积分球作为光源积分器,为光学系统提供了理想的光源条件。手机摄像头Helios标准光源使用方法
积分球是一个内壁涂有白色漫反射材料的空腔球体,又称光度球,光通球等。积分球测试测什么?积分球是一个内壁涂油漫反射涂层的球形腔体。因这些涂层有近似理想漫反射性能,所以,若有一辐射光束照射球的内壁,则反射辐射将按余弦定律分布。因涂层漫反射性质和球形腔的几何性质,使积分球具有特殊功能:其内壁上任一小面元经照射称为一个光源后,在球内壁上的辐射照度处处均匀相同。这是积分球工作的基础。通过积分球可以对样品的反射比进行相对测量。常见的积分球类型分为以下两种:手机摄像头Helios标准光源使用方法