为了***免疫性疾病,将针对甘油醛3-磷酸脱氢酶(***DH)的siRNA与含1,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane、DSPC和胆固醇的阳离子脂质体络合。用该复合物(5mg/kgsiRNA)处理小鼠,4天后,腹腔巨噬细胞和树突状细胞的***DH表达量减少40%,脾源性抗原呈递细胞的***DH表达量减少60%。在其他研究中,将重链铁蛋白特异性siRNA与阳离子脂质体结合,并局部给药于荷U251细胞的人胶质瘤小鼠。**内注射铁蛋白特异性siRNA与DC-Chol和DOPE组成的阳离子脂质体复合物,其抑制**生长的程度与卡莫司定(一种主要用于胶质瘤***的DNA烷基化剂)相当。argonaute-2特异性siRNA已被证明可诱导细胞凋亡,使用由DC-6-14、DSPC、DOPE和DSPC-PEG2000组成阳离子脂质体递送argonaute-2特异性siRNA时发现,将这些复合物静脉注射到接种Lewis肺*的小鼠体内(每隔一天1mg/kg,共5次),这些复合物可降低**组织中argonaute-2的表达,并***抑制**生长。脂质体制备方法:薄膜⽔化法。江苏脂质体载药给药
与Myocet细胞类似,Marqibo也有三瓶装在⼀个包装中。空脂质体内⽔相为柠檬酸缓冲液(0.3M,pH值约4.0)。在装填硫酸⻓春新碱(pKa=5.4)之前,通过添加浓度为14.2mg/mL的磷酸钠缓冲液,将脂质体的外部pH提⾼到pH7.0-7.5左右。与Myocet细胞和Marqibo不同,DaunoXome采⽤低pH梯度(柠檬酸,50mM),导致柔红霉素负荷相对较弱,药物半衰期短,AUC低。相反,⾼跨膜pH梯度(如脂质体内pH2.0)可增加脂质体的药物包封率和抗**功效。然⽽,低pH值会诱导脂质(如磷脂酰胆碱)的酸⽔解,进⼀步诱发脂质体的药物泄漏和稳定性问题。Onivyde使⽤⼀种新型聚阴离⼦盐,即蔗糖三⼄基铵盐(TEA-SOS),在脂质体膜上产⽣电化学梯度。⼀个聚阴离⼦盐分⼦可以结合8个伊⽴替康分⼦。⾸先在TEA-SOS溶液中制备脂质体。交换脂外poso-后将空脂质体与盐酸伊⽴替康溶液在pH为6.5的条件下孵育。包封在脂质体内部的伊⽴替康以⼋硫代蔗糖盐的形式呈现凝胶或沉淀状态。可获得95%以上的⾼包封效率。大连脂质体载药药物Zeta电位被认为是影响细胞摄取和药物传递的重要因素之一。
脂质体配方中脂类的毒性由于LNPs主要由天然脂质组成,它们被认为是无药理活性和毒性**小的。然而,在某些情况下,LNP并非免疫惰性,而LNP成分是可能对人体细胞有毒的非天然化合物。例如,虽然阳离子脂质作为递送脆弱化合物(如核酸)的载体提供了巨大的希望,但一些阳离子脂质会引起细胞毒性。在某些情况下,阳离子脂质会减少细胞中的有丝分裂,在细胞的细胞质中形成液泡,并对关键的细胞蛋白如蛋白激酶c造成有害影响阳离子脂质的细胞毒性取决于它们的结构亲水头基团;具有季铵头基的两亲化合物比具有叔胺头基的两亲化合物毒性更大。疏水链对脂质毒性的影响还没有得到很好的研究,阻碍了低毒性脂质的设计。脂质分子的疏水部分强烈调节其相行为及其对LNP的有用性,但某些脂质相的存在也与膜损伤和细胞毒性有关。PEG-脂质偶联物也可能引起意想不到的毒性,而已知含有PEG-脂质偶联物的LNPs与免疫细胞相互作用,产生针对某些聚乙二醇化脂质的不想要的抗体。
脂质体的靶向释放载药脂质体在体内的行为主要受囊泡的吸收、分布和消除等各种药动学参数的影响。肝脏、脾脏和骨髓中的固定组织巨噬细胞是脂质体在静脉给药后可能进入的主要部位。大脂质体(>0.5µm直径)被固定组织巨噬细胞和血液单核细胞吞噬。对于小脂质体(<0.1µm),吞噬细胞的吞噬和肝实质细胞的摄取途径参与了这些脂质体从血液中的消除。通过静脉给药进行的脂质体药代动力学研究显示,它们主要通过肝脏和脾脏从血液中快速***。脂质组成在组织/生物分布和血液***中也起作用。脂质体的命运由表面电荷、表面特定配体的存在、蛋白质的结合特性和脂质体膜对被包裹标记物的通透性决定。中性带电荷的脂质体表面的蛋白质调理作用**小,因为它们的膜包裹紧密且坚硬,有利于药物的保留。增强成像性能,荧光标记的定量分析,探索药物的药代动力学以及研究药物的靶向性等。
利用设计的脂质,他们发现由1,2-二油醇-3-二甲基氨基-丙烷(DODMA)阳离子脂质组成的核酸脂质颗粒在小鼠和食蟹猴中分别以0.01mg/kg和0.3mg/kg的剂量包封siRNA时表现出基因沉默作用。**近的一项构效关系研究表明,脂质结构的细微差异可能导致转染效率的明显差异。作者设计并合成了1,4,7,10-四氮杂环十二烷环基和含咪唑的阳离子脂质,它们具有不同的疏水区域(例如,分别为胆固醇和双薯蓣皂苷配基)。结果表明,这两种阳离子脂质在HEK293细胞中诱导有效的基因转染。由于AS-ODNs可以下调某些RNA并抑制靶蛋白的表达,因此它们被认为具有作为核酸药物的潜力。大连脂质体载药药物
脂质体的粒径和粒径分布的检测。江苏脂质体载药给药
脂质体疫苗通常在已知疫苗中使用纯化抗原或减毒病原体作为免疫原。然而,长期的免疫反应可能不会由纯化抗原诱导,甚至有时根本不会诱导反应。另一方面,减毒疫苗可以在免疫的患者中产生应答。然而,递送包裹在脂质体内的抗原可诱导长期应答,这在某些抗原的直接免疫中没有观察到。研究表明,恶性细胞的细胞膜可以形成包封潜在抗原的脂质体。文献报道了包封在脂质体中的肽作为**疫苗的***应用能力。有研究评估了BLP25(一个含有合成人MUC1肽的25个氨基酸序列)作为**疫苗的能力。用二硬脂酰磷脂酰胆碱、胆固醇和二肉豆醇酰磷脂酰甘油(摩尔比3:1:25)中含有的单磷脂酰脂A(1%w/w)制备脂质体,然后与脂偶联和非偶联的MUC1肽结合。C57BL/6小鼠免疫分别采用肽相关脂质体、肽与无肽脂质体混合、脂肽单独免疫。结果表明,脂质体制剂对免疫应答有深远的影响。与物理相关的脂质体观察到强烈的免疫反应(抗原特异性t细胞细胞反应),而与肽混合的无肽脂质体或单独的脂肽则没有。体液免疫反应受到关联性质的***影响,这可以通过表面暴露的肽脂质体诱导muc1特异性抗体来证明。因此可以通过调整脂质体药物传递系统来诱导优先细胞反应这提出了一个假设即不同的脂质体配方刺激不同的免疫途径。江苏脂质体载药给药