***个靶向微泡心脏成像研究是在急性缺血再灌注损伤模型中进行的,该模型在狗身上注射了涂有磷脂酰丝氨酸的白细胞靶向微泡,磷脂酰丝氨酸是颗粒吞噬摄取的标记物。这些微泡针对的是在血管中积累且尚未外渗的白细胞:在再灌注后1小时观察到**靶向的造影剂在梗死区积累。在心肌中观察到超声造影剂信号、中性粒细胞靶向放射性示踪剂的积累与髓过氧化物酶(炎症的酶标记物)之间的相关性。上述方法的对比机制是基于白细胞在缺血-再灌注损伤区与上调的细胞粘附分子(p-选择素、e-选择素、ICAM-1和VCAM-1)在血管内膜上的强烈结合现象。因此,不依赖白细胞作为微泡的二级捕获目标可能是更好的策略,而是设计真正的分子显像剂,直接结合内皮细胞上上调的p-选择素、e-选择素、ICAM-1或VCAM-1分子。这样的试剂已经可用,并在体外流动室设置以及模型体内系统中进行了测试。超声微泡的粒径大小直接影响微泡的动物的体内渗透和代谢。江苏超声微泡mRNA
气泡在靶区域的聚集和药物的释放主要依赖于各种外源性和内源性刺激,并不是由特异性的主动靶向引起的。EPR和血管生成相关表面受体的(过)表达是**血管的关键特征。因此,epr介导的被动靶向和基于配体的主动靶向引起了相当大的关注。Kunjachan等人使用RGD和ngr修饰的聚合物纳米药物对被动和主动**靶向进行了可视化和量化。Wu等人开发了负载紫杉醇和A10-3.2适体靶向的聚(丙交酯-羟基乙酸)纳米泡,可以特异性靶向前列腺*细胞,通过EPR效应和us触发的药物递送持续释放负载的PTX。Li等人报道了使用神经肽YY1受体介导的可生物降解光致发光纳米泡作为UCAs用于靶向乳腺*成像。通过血管靶向实现了超声微泡与**血管的快速有效的早期结合,但随着时间的推移,被动靶向的效率显著提高。这些结果表明,被动靶向和主动靶向的结合是有效的需要有效的**成像和***。四川超声微泡外壳了解微泡靶向性的方法是在体外受控条件下,以已知的流速、配体和受体密度进行靶向性研究。
超声照射联合纳米微泡的生物学效应。超声给药技术是基于细胞穿孔的生物物理过程,超声结合纳米微泡和这个过程被称为超声穿孔。与其他纳米粒子相比,纳米微泡在超声能量照射下具有“塌缩”的特殊性质,导致纳米微泡内爆,改变细胞膜的通透性。当超声能量充分增加时,就会发生“超声空化”效应,即液体中的气泡(空化核)振动生长,不断地从声学场中积累能量并坍缩,直到能量达到某一阈值。超声波照射引起超声空化,导致细胞膜出现直径约300nm的空隙,稳定空化的特征是纳米气泡重复的、不坍缩的振荡,对附近细胞产生局部低应力和剪切应力,从而增加血管的通透性。此外,超声波辐照还能产生热和机械***作用。超声波辐照的生物学效应可以增加细胞膜的通透性,诱导基因转移,提高细胞内药物浓度,栓塞**,滋养血管,克服组织屏障,发挥至关重要的靶向作用。
随着微泡造影剂的加入超声对***大小的血管和非常低的流速变得敏感,同时保持了传统b型成像检测形态信息的能力。由于它们具有高度可压缩性并导致超声的强散射,因此微泡在超声图像上显得非常明亮。当失音时,这些介质的膨胀和收缩导致非线性信号的产生。功率多普勒成像涉及一系列超声脉冲的传输和接收,其中脉冲之间的散射体运动用于检测血流。功率多普勒与超声造影剂相结合可提高小血管的检出率。在人类乳腺肿块的二维和三维功率多普勒超声检查中发现,组织逻辑微血管密度(MVD)与**内血管数量之间存在很强的相关性。另一项研究利用**中增强像元与总像元的比例来跟踪小鼠异种移植**的抗血管生成***。与对照组相比,***组的信号像元率***降低,并与MVD相关。已经描述了各种其他方法来增强非线性造影剂回波并抑制周围组织产生的回波。谐波成像是一大类技术,它们具有以一个频率发送入射光束并以入射光束的谐波(整数倍)侦听返**声的共同特征。虽然谐波成像是一种有用的技术,但它也有局限性。**重要的是,由于固有的根据该技术的特性通常必须在图像对比度和空间分辨率之间做出妥协。此外,由于非线性声音传播,组织也会产生非线性回声,从而降低对比度分辨率。功率多普勒成像涉及一系列超声脉冲的传输和接收,其中脉冲之间的散射体运动用于检测血流。
气泡将改变血管壁,允许药物剂外渗,通过将微泡与颗粒和染料共同注射,可评估血管外药物递送的可行性。微泡与钆共注射后MRI显示钆外反酸。或者,药物可以被纳入微泡中,并通过在病变的给药血管中选择性地破裂微泡来增加局部给药。然而,这些方法并不能消除流动血液中释放的药物的冲洗和全身分布。有报道成功地证明了微泡减少新内膜形成、内皮转染和凝块溶解。尽管迄今为止递送的微泡有效载荷的体积很小,但药物或基因通过血脑屏障(BBB)的递送是基于微泡的递送的一个有前途的应用,因为很少有替代方法可以改变BBB对如此***的货物的渗透性。如前所述,超声辐照被描述为在破坏微泡之前将微泡推向血管壁的方法。在运载工具破裂时,通向血管壁的微泡将有效地将药物涂在腔内。与单独使用超声波相比,这种方法导致体外细胞中荧光标记油的沉积量增加了十倍。脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。江苏超声微泡mRNA
过程是利用MNB造影剂与超声联合产生空化效应,以破坏纤维蛋白网。江苏超声微泡mRNA
微泡表面选择合适的偶联化学和修饰顺序取决于配体的类型。一个重要的考虑因素是配体的大小及其对生物利用度的影响。小的亲水分子,如代谢物和肽,可以直接偶联到聚合物间隔物上,而不会***影响聚合物动力学。相比之下,大的蛋白质配体,如抗体,由于剪切应力和涉及微泡分散的有机溶剂,容易变性。因此,抗体(~120 kDa)通常通过生物素-亲和素连接连接到预形成的微泡表面。所得到的复合物更像一个刚性支架,而不是一个自由的聚合物链(50),配体与聚合物刷(~5 kDa)被大块的亲和素分子(~60 kDa)很好地分离。江苏超声微泡mRNA