染色体
当细胞从间期进入有丝分裂期,间期细胞微管网络解聚为游离的αβ-微管蛋白二聚体,再重组成纺锤体,介导染色体的运动;分裂末期纺锤体微管解聚,又重组形成细胞质微管网络。
可分为:动粒微管:连接染色体动粒于两极的微管。
极间微管:从两极发出,在纺锤体中部赤道区相互交错的微管。
星体微管:中心体周围呈辐射分布的微管。
染色体的运动依赖纺锤体微管的组装和去组装。在这一过程中动粒微管与动粒之间的滑动主要是依靠结合在动粒部位的驱动蛋白和动力蛋白沿微管的运动来完成。极微管在纺锤体中部交错,有些分布在极微管之间特殊的双极马达蛋白,其中2个马达蛋白沿一条微管运动,另2个马达结构域沿另一条微管运动。由于2条微管分别来自二极,故极性相反。当双极驱动蛋白四聚体沿微管向正极运动时,纺锤体二极间距离延长。反之纺锤体距离缩短。 纺锤体在细胞分裂后期推动染色体向细胞两极移动。美国MII期纺锤体胚胎发育

胞质膜
在动物细胞的细胞分裂结束时,母细胞在一个被称为“胞质分裂”的过程中分裂成两个子细胞和分区隔离的染色体。有丝分裂纺锤体控制胞质膜上的“胞质分裂”事件,但连接这两个宏观结构的机制一直不清楚。Mark Petronczki及其同事提供了一个结构和功能分析结果,他们发现**纺锤体蛋白(纺锤体中间区域和中间体中的一个蛋白复合物)是有丝分裂纺锤体与胞质膜间所缺失的联系环节,这个联系环节确保“胞质分裂”过程的***结果。本文作者还发现,**纺锤体蛋白的MgcRac***亚单元中的一个区域为一个“系绳”,它连接到胞质膜中的磷酸肌醇脂质上。 [4] 深圳双折射性纺锤体纺锤体在细胞分裂中的功能受到细胞内外环境的共同影响。

什么是纺锤体?它有多重要?
纺锤体主要由微管蛋白组成,微管蛋白是一种含有α和β亚单位的异二聚体。纺锤体不是一成不变的,常常处于组装和去组装的动态变化过程中,一般在细胞分裂的中、后期,纺锤体结构较为典型。纺锤体主要有两个作用:其一,排列与分配染色体;其二,决定细胞胞质分裂的分裂面。纺锤体的完整性决定了染色体分裂过程在时间和空间上的准确性。纺锤体就像一位聪明的大力士的双手,在细胞分裂过程中,能精细的将等位染色体平均拉向细胞的两极,确保分裂后的2个子细胞中的染色体数目相等。但是,如果这个大力士多了一只或几只手,染色体的分配将紊乱,导致非整倍体。纺锤体损伤的增加多见于高龄妇女,或接触某些化学物质的卵母细胞。
在细胞分裂过程中,纺锤体对卵母细胞染色体的平衡、运动、分配、和极体的排出非常关键。卵母细胞成熟过程中的两次减数分裂形成两次纺锤体,卵母细胞受精、雌雄原核融合后又会形成有丝分裂纺锤体。
在生殖医学领域,卵母细胞的冷冻保存技术一直是研究的热点,旨在提高女性生育能力的保存与利用。然而,传统的纺锤体观察方法往往需要对卵母细胞进行固定和染色处理,这不仅破坏了细胞的活性,还限制了对其发育潜能的深入评估。偏光成像技术,特别是Polscope偏振光显微成像系统,通过利用纺锤体微管结构的双折射性,实现了对纺锤体的无损观察。这种技术无需对卵母细胞进行固定和染色,能够在保持细胞活性的同时,实时、动态地观察纺锤体的形态和变化。这不仅提高了观察的准确性和可靠性,还避免了传统染色方法可能带来的细胞损伤和误差。纺锤体在细胞分裂过程中展现出惊人的自我组装能力。

玻璃化冷冻技术因其快速冷冻和解冻的特点,在哺乳动物纺锤体卵冷冻保存中展现出巨大优势。该技术通过极快的降温速率和高浓度的冷冻保护剂,使细胞内溶液在冷冻过程中呈玻璃态而非结晶态,从而避免了冰晶对纺锤体的损伤。此外,研究者们还尝试将微流控技术、激光辅助冷冻等新技术应用于卵母细胞的冷冻保存中,以进一步提高冷冻效果。为了准确评估冷冻对纺锤体的影响,研究者们开发了多种纺锤体稳定性评估技术。例如,通过偏光显微镜观察纺锤体的形态变化;利用免疫荧光染色技术检测纺锤体相关蛋白的分布和表达;以及通过分子生物学方法检测纺锤体相关基因的转录和翻译水平等。这些技术的应用为深入研究冷冻过程中纺锤体的变化提供了有力支持。纺锤体的一端连接着染色体,另一端则锚定在细胞两极。深圳ICSI纺锤体改善分级
纺锤体在细胞分裂末期逐渐解体,为细胞质分裂做准备。美国MII期纺锤体胚胎发育
核移植,又称体细胞核移植,是一种将体细胞的细胞核移入去核卵母细胞中的技术。这一技术的关键在于确保移植后的细胞核能够在卵母细胞内重新编程,恢复全能性,并引导后续的胚胎发育。自1996年克隆羊“多莉”诞生以来,核移植技术便引起了全球范围内的关注与研究热潮。纺锤体是卵母细胞在减数分裂过程中形成的关键结构,负责精确分离染色体,确保遗传信息的正确传递。然而,纺锤体对外部环境极为敏感,容易受到冷冻过程中温度波动、渗透压变化及冷冻保护剂毒性等因素的影响而发生损伤。因此,纺锤体卵冷冻技术的成功与否,直接关系到核移植后胚胎的发育潜力和质量。美国MII期纺锤体胚胎发育
纺锤体缺陷可以分为多种类型,包括但不限于:微管动力学异常:微管的聚合和解聚速率异常,导致纺锤体结构不...
【详情】纺锤体卵冷冻保存技术一直是研究的热点。纺锤体作为卵母细胞减数分裂过程中的主要结构,其稳定性和形态直接...
【详情】在纺锤体卵冷冻过程中,利用纺锤体实时成像技术可以实时监测纺锤体的变化。通过观察冷冻过程中纺锤体的形态...
【详情】亨廷顿病是一种由亨廷顿基因突变引起的神经退行性疾病,其主要病理特征是亨廷顿蛋白的异常聚集。研究表明,...
【详情】减数分裂是生物体形成配子(精子和卵子)的过程,其特点是一次DNA复制后细胞连续分裂两次,形成四个遗传...
【详情】在生殖医学领域,卵母细胞冷冻保存技术作为辅助生殖技术的重要组成部分,近年来取得了进展。尤其是针对成熟...
【详情】随着技术的不断成熟和成本的降低,无损观察纺锤体卵冷冻技术有望在更多医疗机构中得到应用和推广。这将为更...
【详情】纺锤体是如何形成的(1)纺锤体是动植物细胞分裂期形成的与染色体正常分离直接相关的分裂器,纺锤体的装配...
【详情】为了减少冷冻过程中纺锤体的损伤,研究者们尝试在冷冻液及解冻液中添加细胞骨架保护剂,如紫杉醇(Taxo...
【详情】对卵子进行评估:胚胎学家指出:有纺锤体出现的卵母细胞有较高的受精率和胚胎发育率,也就是说纺锤体的存在...
【详情】纺锤体在有丝分裂中发挥着至关重要的导航作用,其主要功能包括:排列与分裂染色体:纺锤体的完整性决定了染...
【详情】近年来,研究者们通过不断优化冷冻保护剂的配方和浓度,发现某些特定成分的组合能够减轻冷冻过程中纺锤体的...
【详情】