在移植模型中,将抗icam -1抗体包被的微泡给予异位心脏移植大鼠,成功地在心脏环境中使用了icam -1靶向微泡。排斥心脏的靶向微泡对比强度几乎比非排斥对照高一个数量级。与移植排斥成像相比,一项更为***的临床任务是确定在到达急诊室时经历暂时胸痛的患者是否发生了短暂性心肌缺血事件并随后得到解决。用于该试验的一种有用的分子显像剂可以检测短暂性缺血心肌组织中内皮细胞上调的p选择素或e选择素。所谓的“缺血记忆剂”是通过链亲和素-生物素连接将抗p -选择素抗体或SialylLewisx放在微泡壳上制备的。在遭受短暂(10至15分钟)血管闭塞的大鼠中,再灌注溶解一小时后注射碳水化合物修饰剂,观察到超声后向散射信号与非缺血区域相比增强了几倍。50在该模型中,没有发生梗死,但缺血确实导致血管内皮活化。在短暂(闭塞10分钟)缺血小鼠心肌中也观察到类似的结果。在给予抗p -选择素抗体靶向泡后,心脏缺血区域的超声造影增强与对照组非缺血区域的信号有统计学差异。多年来,脂溶药物已被纳入运载工具,以避免全身毒性。肝脏靶向超声微泡价格
纳米微泡比超声微泡具有更好的被动瞄准能力,因为纳米微泡的尺寸小于1µm;因此,它们可以通过EPR效应渗透到血管壁并积聚在斑块内。超声微泡中使用的原料或外壳配方会影响表面电荷性质,同时颗粒大小决定了超声微泡在体内的分布。超声微泡的分布特性影响成像诊断的成功及其通过被动和主动靶向给药的有效性“被动靶向”一词指的是增强的per-merabilityretention(EPR)效应,该效应驱动无特异性靶向的裸超声微泡到达病变目标。然而,裸超声微泡通常在静脉注射后10分钟内被吞噬进入网状上皮系统(RES)与***中的内皮功能障碍相关,内膜微血管渗漏可以作为针对***斑块的药物递送的被动靶向途径。因此,纳米微泡比超声微泡具有更好的被动瞄准能力,因为纳米微泡的尺寸小于1µm;因此,它们可以通过EPR效应渗透到血管壁并积聚在斑块内然而,纳米微泡的缺点是无法获得高质量的超声成像因为小尺寸的气泡会降低声响应制备成像用纳米微泡的策略之一是调整和修改纳米微泡的壳体组成,以增加其回波性由于EPR效应与尺寸有关,研究人员在制造100-200nm左右的小尺寸纳米微泡方面存在困难目前的研究表明,与小于50nm和大于300nm的颗粒相比,100-200nm之间的颗粒尺寸在病变部位的蓄积更大。 山西超声微泡全氟丙烷在移植模型中,将抗icam -1抗体包被的微泡给予异位心脏移植大鼠,成功地在心脏环境中使用了icam -1靶向微泡。
载药超声微泡造影剂另一种选择是通过赋予超声微泡生物启发策略,其中天然细胞膜可以用作构建超声微泡的材料。天然细胞膜具有固有的合适特性,如生物相容性、免疫逃逸、自我识别和主动靶向特性。已有研究表明,血小板生物纳米微泡对血管损伤具有优越的靶向能力,可用于超声造影成像。另一种可用于靶向***的候选细胞是白细胞或巨噬细胞,因为它们具有可以特异性结合***斑块中VCAM-1受体的表面蛋白。为了增强细胞膜的降解,可以将超声微泡与光热剂结合,从而随着温度的升高,增加了现场降解的速度,从而提高了药物在病变部位的释放速度。
超声微泡能够在其**中包含各种气体,如全氟丙烷(C3F8))、氢气(H2),氮气(N2),一氧化氮(NO),氧气(O2)和一氧化碳(CO)。这些气体能够影响各种生理和病理生理过程,使其在生物医学应用中非常有用,特别是在***方面。建立网络需要精确的超声微泡设计用于控制加载气体量及其在目标病变处“按需”释放的可兼容结构和成分。例如,NO气体具有血管舒张功能,这使得它在各种生理过程中发挥作用,如血管生成、神经传递和心血管***,特别是***。O2可用于低氧*****,并可加载到超声微泡中用于声动力***(SDT)介导的**根除。此外,全氟化碳(PFC)微泡更常被用作超声成像的造影剂,特别是用于血管超声检查。同时,新型H2抗氧化剂负载的mb在***缺血再灌注方面更有效。目前,超声微泡已发展为多模态造影剂、光热剂等。
超声微泡造影剂成像的优势在于其独特的多路复用方法和快速***的过程。与其他成像方式相比,超声微泡造影剂成像的优势在于其独特的多路复用方法。通常情况下,当分子成像造影剂在体内使用时,它会循环一段时间,并在靶体内积累得相当缓慢。血液***也是一个漫长的过程。为了针对几种不同的配体(如上面列出的所有配体)进行成像,必须使用具有不同光谱特征的几种染料或具有不同发射能量分布或衰变动力学的放射性同位素进行标记。在超声对比设置中,我们不能用不同的颜色“涂”微泡。然而,我们可以利用循环造影剂从血流中快速(在几分钟内)***的优势,以及分别通过对心室和靶的超声波破坏残余循环和沉积造影剂的能力。在一小时内,针对几个目标的分子成像可以**进行,并且可以获得感兴趣组织的完整分子图谱。超声照射联合纳米微泡的生物学效应。定制超声微泡给药
通过将靶向指定表面标记物的配体附着在载药微泡的外部,可以实现更特异性的药物递送。肝脏靶向超声微泡价格
微泡表面的加载也可以通过配体-受体相互作用来实现。例如,Lum等人**近报道了一项研究,其中纳米颗粒通过生物素-亲和素连锁结合到外壳上。固体聚苯乙烯纳米颗粒作为模型系统,可以用可生物降解的材料代替装载药物或基因的纳米颗粒。或者,软纳米颗粒,如脂质体,已成功加载到微泡。这些结果提出了一种模块化的加载方法,即首先将***性化合物加载到纳米颗粒室中,然后将其加载到微泡载体上。这种方法提供了一个多功能平台,可以根据特定***剂的疏水性、大小和释放要求进行定制。肝脏靶向超声微泡价格