ST在EMES市场的份额正在快速增长,作为全球公认的消费电子和手机市场较大的MEMS传感器供应商,ST较近推出了30款以低功耗和小封装为特色的高性能陀螺仪。ST研制的微机械陀螺仪传感器沿用了ST成功的制造技术,ST利用这项技术已经制造了6亿多颗加速传感器, 选择成功的技术可为客户提供较先进的质量可靠的产品,而且可直接用于较终应用。ST陀螺仪的主要元件是一个微加工机械单元,按照一个音叉机制运转,利用Coriolis原理把角速率转换成一个特定感应结构的位移。 陀螺仪在游戏机、遥控器等消费电子产品中的应用,为用户带来更加丰富的操作体验。河北船用惯导

转子陀螺仪,液浮陀螺仪经过几十年的发展,技术上已相对成熟,目前主要作为敏感传感器应用到武器系统上,以实现随动跟踪与制导,但在降低温控装置功耗和噪声等方面,仍有提升空间。动力调谐陀螺仪,在20世纪70年代到20世纪90年代被普遍应用,但随着光学陀螺仪技术的出现和发展,其各方面性能指标均不占优势,在各领域逐渐被光学陀螺仪所取代,目前国内外已基本停止了对动力调谐陀螺仪的研究。静电陀螺仪仍是目前实际应用中,精度较高的陀螺仪,但由于其工艺复杂、成本昂贵、抗干扰能力差等缺陷,如今只在高精度惯性导航系统中继续应用,受关注度较低,各国正努力寻求其替代品,未来进一步发展的空间相对受限。天津惯性导航系统定制价格陀螺仪的制造材料和技术不断发展,使其在精度、尺寸、重量等方面不断突破。

三轴陀螺仪主要用来测量无人机在飞行过程中俯仰角、横滚角和偏航角的角速度,并根据角速度积分计算角度的改变。而一般采用双轴倾角传感器,与三轴陀螺仪构成全姿态增稳控制回路。陀螺仪测量得到的角速度信息用作增稳反馈控制,使飞机操纵起来变的更“迟钝”一些,从而利用倾角传感器测得飞机横滚角和俯仰角。然后将陀螺仪测得的角速率信息和倾角传感器测得的姿态角进行捷联运算,得到融合后的姿态信息。这种较为复杂的捷联算法,能够使姿态精度得到很大提高。
氦-氖环形激光陀螺仪,相比传统的机械式转子陀螺仪,主要优点是无机械转子,结构简单(少于20个部件),抗振动性能好,启动快,可靠性高,数字输出。此外,一些研究人员还提出用固态增益介质替换氦-氖气体,能够使陀螺仪的工作寿命更长、成本更低和制造更简单,这种陀螺也被称为固态环形激光陀螺仪(固态RLG)。目前,基于氦-氖环形激光陀螺仪的惯性导航系统已经普遍应用在航空和航海导航、战略导弹的导航、制导与控制领域,成为主要的高性能陀螺仪之一。陀螺仪可以用于无人机的姿态控制和导航,提供准确的飞行数据。

陀螺仪飞轮会绕着输出轴转动或者不让该轴的转动,这取决于输出万向节的装配方式是自由的还是固定的。姿态基准陀螺仪就是一种自由输出万向节设备,可以用于感测或测量航天器或飞机的俯仰、滚转和偏航的姿态角。转子的重心可以在一个固定的位置。这样转子绕一个轴旋转的同时,还能够绕另外两个轴摆动。而且可以围绕这个固定点在任何方向自由转动(除了转子旋转引起的固有阻力以外)。一些陀螺仪用机械当量代替一个或多个元件。例如,旋转转子可以悬浮在流体中,而不是安装在万向节中。陀螺仪在航空航天领域的应用范围普遍,如飞行器姿态控制、惯性导航系统等。河北陀螺仪参考价
陀螺仪的测量数据具有实时性和连续性,为动态环境下的控制提供可靠依据。河北船用惯导
光学陀螺仪,光学陀螺仪因其精度高、稳定性高、体积小、抗干扰能力强等优势,是目前捷联式惯性导航系统中使用的主流产品,在市场中仍占据着主导地位。激光陀螺仪近年来不断朝着高精度、小型化、低成本的方向快速发展,但如何更有效地减小闭锁效应,更好地提升激光陀螺仪的精度仍是亟待突破的难题。光纤陀螺仪虽然晚于激光陀螺仪出现,但发展势头迅猛,美国、法国、俄罗斯和日本等发达国家,研制的新产品不断涌现,满足了不同领域的实际应用需求,下阶段,融合多种技术,从精度、稳定性、体积和成本等方面提高光纤陀螺仪的整体性能,并采用有效手段克服外界环境的影响,将是光纤陀螺仪的重点研究方向。河北船用惯导