工业自动化与自动驾驶:工业自动化,机器人应用范围包括无人送货小车、自动清扫车辆、园区内的接驳车、港口或矿区的无人作业车、执行监控或巡线任务的无人机等,这些场景的主要特点是路线相对固定、环境相对简单、行驶速度相对较低(通常不超过30km/h)。激光雷达可安装在AGV等小型车辆中,在工厂或仓库中,集成激光雷达可以被用于导航自动化设备,如自动引导车和机器人,并帮助它们避免撞击障碍物,以帮助其在无人环境下自动感知路线从而进行日常作业。农业植保依靠激光雷达辅助无人机,完成精确变量喷洒作业。广东觅道Mid-70激光雷达供应

我们可以根据 LiDAR 能描绘出稀疏的三维世界的特点,而扫描得到的障碍物点云通常又比背景更密集,通过分类聚类的方法可以利用其进行感知障碍物。而随着深度学习带来的检测和分割技术上的突破,LiDAR 已经能做到高效的检测行人和车辆,输出检测框,即 3D bounding box,或者对点云中的每一个点输出 label,更有甚者在尝试使用 LiDAR 检测地面上的车道线。在三维目标识别的对象方面,较初研究主要针对立方体、柱体、锥体以及二次曲面等简单形体构成的三维目标。天津二维激光雷达行价在航海领域,激光雷达为船舶提供了安全导航保障。

机械式激光雷达,工作原理,发射和接收模块被电机电动进行360度旋转。在竖直方向上排布多组激光线束,发射模块以一定频率发射激光线,通过不断旋转发射头实现动态扫描。优劣势分析,优势:机械式激光雷达作为较早装车的产品,技术已经比较成熟,因为其是由电机控制旋转,所以可以长时间内保持转速稳定,每次扫描的速度都是线性的。并且由于『站得高』,机械式激光雷达可以对周围环境进行精度够高并且清晰稳定的360度环境重构。劣势:虽然技术成熟,但因为其内部的激光收发模组线束多,并且需要复杂的人工调整,制造周期长,所以成本并不低,并且可靠性差,导致可量产性不高。其次,机械式激光雷达体积过大,消费者接受度不高。然后,它的寿命大约在1000h~3000h,而汽车厂商的要求是至少13000h,这也决定了其很难走向C端市场。
下游主要客户:车载领域,目前,在智能驾驶市场中,ADAS+ADS双轮驱动,激光雷达作为智能驾驶画龙点睛的产品,不可或缺。在高级辅助驾驶市场,激光雷达的成本不断下降,商业化进程有望提速,全球范围内L3级辅助驾驶量产车项目当前处于快速开发之中。世界各地交通法规的修订为L3级自动驾驶技术商业化落地带来机会。2020年6月通过的《ALKS车道自动保持系统条例》,这是全球范围内头一个针对L3级自动驾驶具有约束力的国际法规。随着激光雷达成本下探至数百美元区间且达到车规级要求,未来越来越多高级辅助驾驶量产项目将实现量产;根据Forst&Sullivan的研究报告,2021-2026E、2026E-2020E全球乘用车新车市场ADAS车辆销售CAGR有望达75.5%、30.5%,其中中国增速较高,分别为92.2%/29.3%。览沃 Mid - 360 混合固态技术优越,实现 360° 全向超大视场角感知。

自动驾驶汽车中的汽车传感器使用摄像头数据、雷达和LiDAR来检测周围的物体,自动驾驶汽车使用LiDAR传感器探测周围建筑和车辆,开发LiDAR 系统所需要的软件工具,软件在LiDAR系统的创建和运行中的各个环节都非常关键。系统工程师需要辐射模型来预测回波信号的信噪比。电子工程师需要电子模型来建立电气设计。机械工程师需要CAD工具来完成系统布局。还可能会需要结构和热建模软件。LiDAR系统的运行需要控制软件和将点云转换并重建为三维模型的软件。而LiDAR是利用光作为探测媒介来感知周围的系统,因此光学工程师运用光学软件设计可靠稳定的光学系统是关键。激光雷达通过多角度扫描,获取目标的完整信息。天津固态激光雷达行价
轻巧身躯易嵌入,览沃 Mid - 360 为移动机器人外观一体化设计助力。广东觅道Mid-70激光雷达供应
激光雷达难点:当周边环境中存在透明介质 (如洁净水体) 时,位于透明介质内部或后方的目标能够被测到。由于光线在透明介质中会发生折射,被测目标实际上位于折射光路上,而测量结果则位于直线光路上,测量出的目标位置会发生偏差,此外,雷达也可能会收到两个反射回波,一个来自于透明介质内部或后方的实际目标表面的反射,另一个来自于不完全洁净的透明介质表面的漫反射,此时的测量结果不确定,有可能是介质表面,也可能是实际目标。广东觅道Mid-70激光雷达供应