OLTC的振动信号主要通过两种路径传播:一是通过静触头的机械连接直接传递至变压器外壳;二是通过变压器油的声波传导。这两种路径的信号特征有所不同,静触头传递的信号通常包含高频成分(如触头撞击),而油中传播的信号则以中低频为主(如机械共振)。AFV信号分析法需结合多传感器布置,以捕捉不同频段的振动信息,从而提高故障诊断的准确性。例如,触头接触不良会导致高频振动能量增加,而弹簧弹性下降则可能引起低频振动幅值的变化。杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的多功能集成。声纹振动设备

变压器在生产、运输、安装过程中或在短路电流作用下,均会使绕组及铁芯压紧程度降低,绕组及铁芯故障分别约占变压器整体故障的36%和4%,对变压器抗短路电流冲击能力及安全稳定运行产生巨大威胁。绕组故障主要包括绝缘老化、受潮、匝间或绕组间短路、断路及机械损伤等,以上故障类型均可能导致绕组变形。传统的绕组变形监测方法有低压脉冲法(LVI)、频率响应分析法(FRA)和短路阻抗法(SCI),以上方法*适用于离线或停电监测。铁芯典型故障包括压铁松动、接地不良、夹件松动或损伤,常用监测方法包括绝缘电阻测试及接地电流监测。声学指纹振动电话杭州国洲电力科技有限公司振动声学指纹在线监测技术的客户反馈分析。

变压器/电抗器(下文皆用“变压器”简称)在电力系统中起到电压变换、电能分配等重要作用,其安全稳定运行对确保供电可靠性具有重要意义。有载分接开关(下文皆用OLTC简称)、绕组及铁芯是变压器的重要组成部分,三者故障率总和占变压器整体故障70%左右,而传统预防性试验有试验周期长、影响变压器正常运行、耗费人力物力等缺点。开展基于声学指纹的状态监测,可在在线状态下及时发现变压器OLTC、绕组及铁芯的潜在故障,并及时预警,从而延长变压器使用寿命,提高电网运行的可靠性。
三、技术方案3.1系统原理变压器振动主要包括OLTC切换时的瞬态振动、电流通过绕组时电动力引起的绕组振动、硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动、以及冷却装置工作时的振动。其中冷却系统引起的基本振动频率小于100Hz,不作为变压器振动监测与诊断分析的内容。变压器内部振动信号通过绝缘油、支撑单元、加强筋结构等多种途径传播,可由安装于外壁的振动传感器测得。OLTC切换过程中,分接选择器动作、切换开关动作、动静触头碰撞等机械动作产生声纹振动信号。信号包含触头分合状态、三相触头是否同期、触头表面是否平整、切换是否到位等信息,可反映分接开关结构磨损、卡滞、松动、变形等故障。切换过程中若储能弹簧性能发生改变或储能过程中存在机构卡塞等现象,必然伴随着电机驱动力矩的变化,使驱动电机电流发生变化。因此驱动电机电流与声纹振动的两类信号融合分析,可更加有效的评价OLTC的运行状况和疑似故障类型。GZAFV-01型声纹振动监测系统(变压器、电抗器)监测和综合分析。

利用 AFV 信号分析法对 OLTC 进行状态监测,需要深入理解 OLTC 故障类型与振动特性之间的内在联系。OLTC 内部的各种故障,如触头问题、弹簧弹性下降等,都会对其振动特性产生影响。以弹簧弹性下降为例,弹簧作为 OLTC 内部的重要部件,其弹性下降会导致机械结构的动力学特性发生改变,在切换时产生的脉冲冲击力也会相应变化,从而使 OLTC 的振动信号发生改变。通过 AFV 传感器对这些振动信号的长期监测和分析,我们可以建立起故障类型与振动特征之间的对应关系,实现对 OLTC 故障的早期预警和准确诊断。GZAFV-01型声纹振动监测系统的概述。有载开关声纹振动平台
杭州国洲电力科技有限公司振动声学指纹在线监测功能的故障诊断能力。声纹振动设备
4.2.3根据各时频信号相关系数、能量分布曲线特征参量(相关系数、最大值、平均值、峰度、偏度)、ATF图谱特征参量(六等分区间均值)、总谐波畸变率、基频信号能量比等状态量,采用深度学习算法,自动判断变压器运行状态及疑似机械故障类型。图16基于声纹振动法的故障诊断4.2.4结合变压器的带电检测、智能巡检以及其他在线监测的状态量,进行数据的多参量融合分析,形成基于多源数据的故障预警机制,多参量融合分析不仅提高了疑似故障识别的准确性,而且还能**降低因单个参量判别故障带来的误报。例如,对于变压器疑似问题的诊断可结合负荷、损耗、绕组机械振动信号、油温、以及历史电流电压情况分析,在监测到变压器的声纹振动频谱时,系统可以自动去查询变压器的历史电流和电压信号,如果发现在某段时期确实有大电流冲击,可给出预警:变压器可能存在绕组变形的异常。声纹振动设备