全固态激光雷达。顾名思义此激光雷达没有任何机械摆动结构,自然也没有旋转。将机械化的激光雷达芯片化,体型更小、性能更好、寿命更可靠,但逃脱不了摩尔定律的轨道,目前有两种方式。1. 光学相控阵式(OPA)固态激光雷达,OPA固态激光雷达完全没有摆动固件,利用多个光源组成阵列,合成特定方向的光束,实现对不同方向的扫描。具有扫描速度快、精度高、可控性好、体积小(Quanergy激光雷达只有90x60x60mm)等优点,缺点是易形成旁瓣,影响光束作用距离和角分辨率,同时生产难度高。2.Flash固态激光雷达,Flash固态激光雷达,也可以说是非扫描式,它可以在短时间直接发射出一大片覆盖探测区域的激光,利用光阵构建图像,就像是照相机,快速记录整个场景,减少了没有了转动与镜片磨损,相对更为稳定,不过缺陷也很明显,比如探测距离较近,对处理器要求较高,相对应成本也高。Mid - 360可达70 米 @80% 反射率探测,适应室内外不同光照。黑龙江AMR激光雷达

调频连续波FMCW激光雷达,以三角波调频连续波为例来介绍其测距/测速原理。蓝色为发射信号频率,红色为接收信号频率,发射的激光束被反复调制,信号频率不断变化。激光束击中障碍物被反射,反射会影响光的频率,当反射光返回到检测器,与发射时的频率相比,就能测量两种频率之间的差值,与距离成比例,从而计算出物体的位置信息。FMCW的反射光频率会根据前方移动物体的速度而改变,结合多普勒效应,即可计算出目标的速度。优点:每个像素都有多普勒信息,含速度信息;解决Lidar间串扰问题;不受环境光影响,探测灵敏度高;缺点:不能探测切向运动目标。觅道Mid-360激光雷达定制价格Mid - 360 小巧体积,安装布置灵活,满足移动机器人多样安装需求。

给定两个来自不同坐标系的三维数据点集,找到两个点集空间的变换关系,使得两个点集能统一到同一坐标系统中,这个过程便称为配准。配准的目标是在全局坐标框架中找到单独获取的视图的相对位置和方向,使得它们之间的相交区域完全重叠。对于从不同视图(views)获取的每一组点云数据,点云数据很有可能是完全不相同的,需要一个能够将它们对齐在一起的单一点云模型,从而可以应用后续处理步骤,如分割和进行模型重建。目前对配准过程较常见的主要是 ICP 及其变种算法,NDT 算法,和基于特征提取的匹配。
点频,即周期采集点数,因为激光雷达在旋转扫描,因此水平方向上扫描的点数和激光雷达的扫描频率有一定的关系,扫描越快则点数会相对较少,扫描慢则点数相对较多。一般这个参数也被称为水平分辨率,比如激光雷达的水平分辨率为 0.2°,那么扫描的点数为 360°/0.2°=1800,也就是说水平方向会扫描 1800 次。那么激光雷达旋转一周,即一个扫描周期内扫描的点数为 1800*64=115200。比如禾赛 64 线激光雷达,扫描频率为 10Hz 的时候水平角分辨率为 0.2°,在扫描频率为 20Hz 的时候角分辨率为 0.4°(扫描快了,分辨率变低了)。输出的点数和计算的也相符合 1152000 pts/s。农业植保依靠激光雷达辅助无人机,完成精确变量喷洒作业。

在三维模型重建方面,较初的研究集中于邻接关系和初始姿态均已知时的点云精配准、点云融合以及三维表面重建。在此,邻接关系用以指明哪些点云与给定的某幅点云之间具有一定的重叠区域,该关系通常通过记录每幅点云的扫描顺序得到。而初始姿态则依赖于转台标定、物体表面标记点或者人工选取对应点等方式实现。这类算法需要较多的人工干预,因而自动化程度不高。接着,研究人员转向点云邻接关系已知但初始姿态未知情况下的三维模型重建,常见方法有基于关键点匹配、基于线匹配、以及基于面匹配 等三类算法。主动抗串扰功能,使览沃 Mid - 360 在多雷达干扰下仍能正常运作。览沃激光雷达定制价格
借 360°x59° 超广 FOV,Mid - 360 力保移动机器人作业现场安全。黑龙江AMR激光雷达
激光的诞生,光子入射到物质中,以刺激电子从较高能级过渡到较低能级,并发射光子。当原子处于某种激发态时,有能量合适的光子从该原子附近通过,该原子就会释放出一个具有同样电势能的光子,从而跃迁到低能级状态。入射光子和发射光子具有相同的波长和相位,该波长对应于两个能级之间的能量差。一个光子刺激一个原子发射另一个光子,因此产生两个相同的光子,1917年,爱因斯坦在量子理论的基础上提出了一个崭新的概念一一受激辐射:即在物质与辐射场的相互作用中,构成物质的原子或分子可以在光子的激励下产生光子。黑龙江AMR激光雷达