工控机安装于主控室内主控柜中,堪称整个系统的 “大脑”。它通过网络接收各子 IED 传输过来的数据,这些数据包含了来自特高频传感器和超声波传感器采集并经 IED 初步处理的信息。工控机强大的运算能力在此刻得以展现,它对这些海量数据进行综合分析处理。运用先进的算法,对数据进行深度挖掘,提取局部放电的关键特征参数。例如,通过对相位信息、放电量、放电次数等数据的分析,判断局部放电的发展趋势,为用户提供准确的设备状态评估,在保障电力系统安全运行方面发挥着**作用。不同品牌的高压开关监测系统在数据传输稳定性上有何差异?专注在线监测监测频率

GZAF-1000S系列高压开关振动声学指纹监测系统--遵循标准:2.1GB/T4208外壳防护等级(IP代码);2.2DL/T860变电站通信网络和系统;2.3DL/T1430变电设备在线监测系统技术导则;2.4DL/T1432.1变电设备在线监测装置检验规范第1部分:通用检验规范;2.5DL/T1498.1变电设备在线监测装置技术规范第1部分:通用技术规范;2.6DL/T1686六氟化硫高压断路器状态检修导则;2.7DL/T1687六氟化硫高压断路器状态评价导则;2.8DL/T1700隔离开关及接地开关状态检修导则;2.9Q/GDW383智能变电站技术导则;2.10Q/GDWZ414变电站智能化改造技术规范;2.11Q/GDW561输变电设备状态监测系统技术导则;2.12Q/GDW739输变电设备状态监测主站系统变电设备在线监测I1接口网络通信规范;2.13国家电网公司智能组合电器技术规范(试行);2.14南方电网公司变电站设备在线监测装置通信通用技术规范;2.15Q/CSG1203021南方电网公司变电站设备在线监测通用技术规范;2.16南方电网公司在线监测综合处理单元技术规范声纹在线监测指纹图谱杭州国洲电力科技有限公司局部放电在线监测技术的行业标准对比。

3.2.1感知层的传感器GZAFV-01系统的感知层如上图3.1所示,由IED/主机、6路声纹振动传感器、1路电流传感器等构成,声纹振动传感器集成电荷放大器,将声纹振动信号转换成与之成正比的电压信号;电流传感器采用微型卡扣结构,便于现场安装。各传感器外观及参数如下表1所示。◆3路声纹振动传感器采集取OLTC振动信号,通过固定底座安装在变压器外壁,安装位置选取平行于OLTC的垂直传动杆方向,且尽量靠近OLTC的触头组处。◆1路电流传感器采集OLTC驱动电机电流信号,安装于OLTC驱动电机电源线处。◆3路声纹振动传感器采集变压器绕组及铁芯声纹振动信号,安装位置选取于上夹件底部、非冷却器侧油箱表面中部、油箱顶部中心点。为保持监测点的同一性,便于后期监测数据的时间轴线比对,所有声纹振动传感器底座长期固定在变压器外壁上。安装示意图如下图3所示。(备注:传感器安装的数量及位置可根据被测设备的监测需求而灵活调整)
3.3.2.3基频信号能量比(E)100Hz基频分量时域信号能量占信号总能量的比值,计算公式:E=jmS1j2jmSj2,其中S1为100Hz基频分量的时域信号,Sj为原始信号,j为采样索引值。正常状态下,由于100Hz基频分量为声纹振动频谱图的主要成分,基频信号能量比应较大;存在故障时,谐波分量增加且峰值频率发生偏移,基频信号能量比变小。3.3.2.4互相关系数(r)正常状态与实测的声纹振动信号频谱图之间的相似度,计算公式:r=i=0N-1[Xi-X][Yi-Y]i=0N-1[Xi-X]2i=0N-1[Yi-Y]2,其中Xi和Yi分别为正常状态与实时测得声纹振动信号的频域分布,X和Y为对应信号的平均值,互相关系数范围为0~1。◆正常运行时,相关系数应接近于1。◆存在故障时,信号频率分布发生改变,互相关系数减小。杭州国洲电力科技有限公司局部放电在线监测技术的多维度评估方法。

GZAFV-01系统的功能特点
GIS在带电运行过程中除了机械故障会导致异常振动外,放电性故障(如绝缘子内部缺陷、螺丝松动、悬浮电位放电、毛刺前列放电、金属微粒放电等)也会导致声纹振动信号的产生。因此,通过深入研究GIS本体的声纹振动信号特征可发现GIS机械性故障及放电性故障,具有监测***、监测结果互相补充的特点。基于声纹振动信号的在线监测,可在GIS带电运行状态下及时发现潜在故障,并及时预警,从而延长使用寿命,提高电网运行的可靠性。我公司以声纹振动信号为主,结合电流、位移等其他参量的在线监测,开发了故障诊断算法(***软著权)并提取相关特征参量研制完成的GZAFV-01型声纹振动监测系统,适用于开关设备的带电监测(便携诊断式、手持巡检式)、在线监测(长期固定式、短期移动式)。GZAFV-01系统由声纹振动传感器(压电式加速度计)、位移传感器、电流传感器、IED(在线监测式)/主机(便携/手持式)、云服务器、通讯单元、供电单元等组件构成,架构示意图如下图3.1所示,标准1U的IED/便携式主机。 杭州国洲电力科技有限公司局部放电在线监测技术的故障诊断能力。质量在线监测常用知识
该技术对城市基础设施的安全监测有怎样的重要意义?专注在线监测监测频率
智能算法在 GIS 设备机械性故障监测中也具有广阔的应用前景。利用机器学习算法,如支持向量机、人工神经网络等,对大量的振动和声学监测数据进行学习和训练。通过建立故障诊断模型,使算法能够自动识别设备的正常运行状态和各种机械性故障状态。例如,将历史监测数据中的正常状态数据和已知的机械性故障状态数据作为训练样本,训练人工神经网络模型。经过训练的模型可以对实时监测数据进行快速分析,准确判断设备是否存在机械性故障,并预测故障的发展趋势,为设备的维护和检修提供科学依据。专注在线监测监测频率