以县(区)为单位,建立当地传染病报告病例历史数据库,采用移动百分 位数法动态计算传染病病例数历史基线,建立将当地当前观察周期(7天)内病 例数与其相应历史基线实时进行比较的预警模型。当观察周期内发现的病例数达到预警阈值时,系统将在24小时内自动发出预警信号。采用移动百分位数法预警的病种:甲肝、丙肝、戊肝、麻疹、流行性出血 热、流行性乙型脑炎、痢疾、伤寒和副伤寒、流行性脑脊髓膜炎、猩红热、钩 端螺旋体病、疟疾、流行性感冒、流行性腮腺炎、风疹、急性出血性结膜炎、 流行性和地方性斑疹伤寒、除霍乱、细菌性和阿米巴性痢疾、伤寒和副伤寒以外的***性腹泻病。通过汇聚传染病病例监测预警信号,生成基于大数据和专业预警模型合预警信息。如果医生漏报,即可推送回医生端,强制医生上报。青海2026传染病系统建设

疾病预防控制管理系统是一种基于计算机技术的管理系统,旨在帮助**和公共卫生机构有效地控制、预防传染病等疾病的发生和传播。该系统可以实现传染病的实时监测,并提供预警和响应机制,可以迅速发现**并做出应对措施。该系统还可以帮助公共卫生机构进行疾病的数据统计和分析,有效指导各类卫生服务提供者的疾病预防和控制工作,保障人民身体健康和社会稳定。此外,该系统还具有良好的可扩展性和互操作性,可以适应各种情境和变化,并与其他卫生信息系统进行集成和共享,保障整个卫生信息体系的协调一致和高效运行。福建传染病系统信息研究表明,有效的预警系统能够使公众传染率降低20%-30%。

传染病系统架构基于疾控中心提供的四十多种法定传染疾病大数据、行程防疫大数据、电信部门提供的手机信令大数据、通过我们定制手环获取的隔离用户生理特征和轨迹大数据以及通过分布式爬虫获取的**舆情大数据,综合利用移动互联网、大数据、云计算、IoT、AI智能算法、时空数据挖掘、GIS等先进技术,建立**参与的全过程全周期**精细预防与防控体系。本系统自上而下分为四层,分别为:众源数据层、应用支撑层、业务逻辑层和应用表现层。
智慧转型,从“被动报告”到“主动感知”传统传染病监测依赖医疗机构被动上报,存在时效性差、覆盖面有限等问题。系统通过强化日常监测信息分析和定期风险评估,构建起“主动感知”新模式。系统实时研判重点传染病流行态势和发展趋势,定时通报监测分析结果,为防控策略调整提供前瞻性指导。更重要的是,系统推动医疗机构和疾控机构信息系统有效对接,实现涉疫数据双向流通和异常信号自动识别。例如,当患者就诊记录、药品**或社区健康异常事件出现关联性波动时,系统可立即触发预警,将**信息从传统的“被动报告”转向“主动感知”,大幅缩短响应时间。首先,数据获取是传染病防控的基础。

为什么要部署监测预警前置软件?在传统的传染病上报流程中,传染病网络直报系统的报告终端放置在医院负责传染病上报的部门,如防保科或公共卫生科等。临床医生在接诊过程发现传染病病例时,需要先从HIS、电子病历系统中找到患者相关信息,转录填写传染病报告卡(纸质或电子版)后,再传递给防保科医生,然后由防保科医生通过报告终端,再次手工转录并上报。这个过程存在以下弊端:“被动性”:传统的传染病监测主要依赖于临床医生的诊断和报告,这种模式容易受到医生主观判断的影响,且可能因医生的疏忽或经验不足而导致漏报或误报。待检查、检验阳性结果出来后,实时推送给相关医生,完成传染病报卡。吉林中国传染病系统建设
实验室检测结果作为监测数据的重要组成部分,对于传染病预警和防控具有重要意义。青海2026传染病系统建设
传染病系统。该系统以电子病历为基础,获取诊断为传染性疾病(包括但不 限于40种法定传染病)的电子病历数据(包含病例基本信息、症状体征、实验 室检查、***转归、发病时间、***者人口学特征、地域分布等),构建基于医院电子病历的传染病病例监测预警。根据预警规则,完成传染病电子病历信 息转换为传染病预警信号,以便开展传染病来源排查和风险识别,包括是否有潜在聚集性风险、是否有敏感身份人员(医护人员、公共服务人员等)。青海2026传染病系统建设