企业商机
解决方案基本参数
  • 品牌
  • 倍联德
  • 型号
  • 齐全
解决方案企业商机

倍联德液冷解决方案支持跨平台硬件适配,其G808P-V3工作站可兼容Intel至强W-3400/2400系列处理器与NVIDIA RTX A6000/4090显卡,并通过双电源设计与112条PCIe 5.0通道,满足分子动力学模拟、3D渲染等高负载场景需求。在比亚迪新能源电池生产线中,该方案通过实时分析2000+传感器数据,将缺陷检测良品率从98.5%提升至99.97%,同时降低产线能耗22%。在智能制造场景中,倍联德边缘计算工作站集成NVIDIA Jetson AGX Orin模块与液冷散热系统,支持Profinet、EtherCAT等工业协议。在比亚迪电池生产线中,该方案通过5G网络实时处理AGV小车视觉导航数据,使货物吞吐效率提升35%,同时降低20%的运维成本。城市治理解决方案在智能交通和智能环保方面取得了明显成果。广东智慧能源解决方案项目实施

广东智慧能源解决方案项目实施,解决方案

倍联德深耕智慧城市领域多年,其技术体系覆盖从数据采集、传输到存储、分析的全链路需求,形成三大重要优势:针对智慧城市中交通信号控制、环境监测等需要毫秒级响应的场景,倍联德推出1U短深度边缘服务器,采用英特尔至强D系列处理器,支持20重心高算力与冗余电源设计,可在-20℃至60℃的极端环境下稳定运行。例如,在西安智慧交通项目中,该服务器通过部署于路口的摄像头与传感器网络,实时分析车流量数据并动态调整信号灯配时,使主干道通行效率提升30%,拥堵时长缩短40%。深圳智慧水务解决方案数据中心解决方案确保了数据的安全存储与高效访问。

广东智慧能源解决方案项目实施,解决方案

针对不同规模客户的差异化需求,倍联德提供从标准产品到OEM/ODM的灵活合作模式。例如,为中小实验室设计的Mini-Eve系列工作站,在2U空间内集成2张RTX 4090显卡与全闪存存储,支持Stable Diffusion文生图任务的批量处理,而成本只为同类产品的60%。倍联德产品已出口至东南亚、中东及欧洲市场,为新加坡港自动化码头、中东金融数据中心等项目提供本地化部署方案。其边缘计算存储节点在新加坡港的应用中,通过5G网络实时处理AGV小车数据,使货物吞吐效率提升35%,同时降低20%的运维成本。

倍联德液冷技术已渗透至医疗、科研、制造等关键领域,形成差异化竞争优势:在医疗影像分析领域,倍联德与多家三甲医院合作开发了基于液冷加速的数字孪生系统。其G808P-V3工作站搭载双路AMD EPYC 7763处理器与4张RTX 5880显卡,可实时渲染8K分辨率的三维模型,配合AI辅助诊断算法,将肺结节检测准确率提升至99.2%,单例CT扫描分析时间从15分钟缩短至90秒。针对材料科学领域的高密度计算需求,倍联德推出浸没式液冷超算集群,通过NVLink互联技术实现16张RTX 6000 Ada显卡的显存共享,使分子动力学模拟的原子数量从100万级提升至10亿级。在中科院锂离子电池电解液研发项目中,该方案将模拟周期从3个月压缩至7天,助力团队快速筛选出性能提升40%的新型配方。高校教育解决方案推动了教育信息化的快速发展。

广东智慧能源解决方案项目实施,解决方案

倍联德通过“硬件+软件+服务”的一体化模式,构建起覆盖芯片厂商、ISV及终端用户的开放生态:公司与英特尔、英伟达、华为等企业建立联合实验室,共同优化存储协议与加速库。例如,其存储系统深度适配NVIDIA Magnum IO框架,使AI训练任务的数据加载速度提升3倍;与华为合作开发的NoF+存储网络解决方案,已应用于30余家金融机构及交通企业。针对不同规模客户的差异化需求,倍联德提供从标准产品到OEM/ODM的灵活合作模式。例如,为中小社区设计的Mini-Eve系列工作站,在2U空间内集成2张RTX 4090显卡与全闪存存储,支持Stable Diffusion文生图任务的批量处理,而成本只为同类产品的60%。工作站解决方案为设计师和工程师提供了强大的计算支持。高校教育解决方案提供商

工作站解决方案在图形处理和视频编辑等领域具有普遍的应用价值。广东智慧能源解决方案项目实施

针对高密度计算场景的散热难题,倍联德推出R300Q/R500Q系列2U液冷服务器,采用冷板式液冷设计,PUE值低至1.05,较传统风冷方案节能40%。以某三甲医院为例,其部署的R500Q液冷工作站搭载8张NVIDIA RTX 5880 Ada显卡,在运行6710亿参数的DeepSeek医学大模型时,单柜功率密度达50kW,但通过液冷技术将噪音控制在55分贝以下,同时使单次模型训练的碳排放从1.2吨降至0.3吨,相当于种植16棵冷杉的环保效益。倍联德自主研发的异构计算平台支持CPU+GPU+DPU协同工作,通过动态资源调度优化计算-通信重叠率。在香港科技大学的深度学习平台升级项目中,其定制化工作站采用4张NVIDIA RTX 4090显卡与至强四代处理器组合,配合JensorFlow框架实现98%的硬件利用率,使ResNet-152模型的训练时间从72小时压缩至8小时,而部署成本只为传统方案的1/3。广东智慧能源解决方案项目实施

解决方案产品展示
  • 广东智慧能源解决方案项目实施,解决方案
  • 广东智慧能源解决方案项目实施,解决方案
  • 广东智慧能源解决方案项目实施,解决方案
与解决方案相关的**
信息来源于互联网 本站不为信息真实性负责