积木编程课程通过将抽象的编程逻辑转化为可触摸、可组合的彩色积木模块,为儿童及初学者搭建了一座无缝衔接抽象思维与具象操作的桥梁,其主要价值在于以游戏化的方式多维度能力发展。在认知层面,它将复杂问题分解为可视化指令块,如循环、条件判断和函数等,学习者通过拖拽拼接积木序列来操控角色或机器人行为,这一过程不仅规避了传统编程的语法门槛,更在潜移默化中锤炼了系统性逻辑思维和问题解决能力——例如设计避障机器人时需分析传感器数据与马达响应的因果关系,逐步构建严密的推理链条。5岁儿童用积木复现绘本场景,语言描述复杂度提升。图形化积木DIY搭建

积木编程作为一种阶梯式教育工具,适合3岁至18岁的儿童及青少年学习,其教学重点随年龄增长呈现明显的递进性和差异化,在于匹配不同阶段的认知发展水平与能力培养目标:幼儿阶段(3-6岁)以感官体验与基础认知为重点,通过大颗粒积木的拼搭(如乐高Duplo、途道机械师套装)培养空间想象力与手眼协调能力。编程学习聚焦“动作指令”的具象化理解,例如用ScratchJr拖拽“移动”“发声”积木块控制角色动画,让孩子感知“指令→结果”的因果逻辑,同时融入颜色、形状等启蒙知识,避免抽象符号的过早介入。普及积木创客机器人课程K12难度分级课程覆盖4-16岁全学段,实现能力无缝衔接。

进入编程阶段,教师需将代码逻辑具象化为可操作的指令卡片。例如让孩子用刷卡编程器组合“触碰传感器→亮灯→播放音乐→等待5秒→熄灯”的序列,通过拖拽卡片的动作,直观感受“顺序执行”不可颠倒的因果关系。当孩子发现灯笼未按预期亮起时,正是教学黄金时机:鼓励小组合作排查电池方向、卡片顺序或传感器接触问题,在调试中理解“输入(触发)-处理(程序)-输出(响应)”的完整链条,此时教师可追问“如果希望灯笼天黑自动亮,该换什么传感器?”,为后续课程埋下伏笔。
小学低年级(6-9岁)重点转向逻辑思维的系统构建。学生通过Scratch等图形化工具学习编程三大结构:顺序执行(指令链条)、循环控制(重复动作)、条件判断(如“碰到边缘反弹”),并开始结合硬件(如WeDo机器人)实现基础软硬件联动。例如用循环积木编程让机器人沿黑线巡迹,在实践中理解传感器反馈与程序响应的关系,同步培养问题分解能力和调试耐心。小学高年级至初中(10-15岁)深化算法设计与跨学科整合。教学强调变量、函数、事件响应等高级概念的应用,例如用Scratch克隆体制作弹幕游戏,或通过Micro:bit传感器积木采集环境数据驱动LED阵列。此阶段突出项目制学习(PBL),如设计“智能浇花系统”需综合湿度传感(科学)、条件判断(编程)、机械结构(工程),并逐步引入Python文本编程作为过渡,为算法竞赛或硬件创新项目打下基础。格物斯坦向乡村捐赠300余种积木教具,远程双师课堂惠及5万名山区儿童。

积木编程重构了学习生态:教育游戏化:通过挑战任务(如编程通关游戏)和即时调试工具,将枯燥的调试过程转化为探索性实验,失败被重新定义为“优化契机”,培养试错韧性;社区共创:用户可分享加密脚本、协作搭建复杂项目(如智能城市),在交流中激发跨领域灵感;平滑进阶路径:从零基础拖拽积木,到高级功能模块(如物理引擎、AI算法积木),再到一键转换Python代码,形成从启蒙到专业的无缝衔接。积木编程的本质,是用触觉消解认知屏障,用游戏重构学习动机,将“创新”从概念变为指尖可触的创造实践。积木-传感-编程三位一体架构是格物斯坦课程重点。中龄段积木编程课堂
格物斯坦品牌哲学源自《礼记》,强调通过积木探究事物本质,培养科学精神。图形化积木DIY搭建
积木编程的更深层的跨界整合体现在软硬件生态的无缝联动中。以教育场景中的典型项目为例:学生使用温度传感器积木监测环境数据,通过编程平台将采集的信息映射为LED亮度变化,再结合云端AI积木实现语音控制(如“太热了”自动触发降温程序),形成“传感→分析→执行”的闭环。而在进阶应用中,厦门大学的“无人机编队系统”进一步彰显了这种整合的深度——学生拖拽“上升”“旋转”等积木块设计飞行动作,系统自动生成代码驱动实体无人机群协同表演,过程中需融合物理平衡(陀螺仪数据补偿机身倾斜)、几何拓扑(多机路径避障)与艺术表达(灯光节奏编程),将数学、工程、美学的跨学科知识凝结于指尖的拼搭。
图形化积木DIY搭建