智能预警与诊断模块运用人工智能技术实现设备故障智能预测。系统基于设备历史运行数据,通过机器学习算法建立设备健康状态预测模型。智能诊断引擎分析实时运行参数,识别异常模式,定位故障根源。预警信息分级推送,重大预警自动升级处理。案例自学习功能不断积累诊断经验,提升预警准确性。诊断报告自动生成,包含故障原因分析、处理建议和预防措施。专人会诊功能支持多专人在线协同分析复杂故障。该模块实现设备故障的早期发现和定位,帮助企业从被动维修转向主动预防,提升设备运行可靠性。边缘计算模块实现设备数据的就地处理与实时分析。便捷设备完整性管理与预测性维修系统解决方案

设备巡检模块利用移动终端与云端知识库,支持现场人员进行标准化点检作业。系统支持配置多种巡检计划,包括路线、点位、数据项与巡检要求,可按人员类型与巡检形式进行分类设置。巡检任务通过扫描NFC或二维码触发,巡检人员现场记录数据并上传。系统支持离线巡检,数据在恢复网络后自动同步。采集数据如超出正常范围,系统自动高亮提醒,并记录至数据处理中心。巡检过程中,人员可一键查看设备参数、工艺属性及相关历史记录,发现异常时可发起隐患上报或报修流程。巡检结果自动生成台账,系统统计合格率、巡检时间与隐患数量,支持图表化展示,便于进行绩效管理与作业质量评估。模块化设备完整性管理与预测性维修系统技术文档管理评审模块支持设备管理体系的持续改进与优化。

设备管理驾驶舱与决策支持中心模块为企业高层提供全局性的设备管理态势感知。该模块通过一个高度集成、可视化的界面,将分散在各子系统中的关键信息(如全厂设备实时状态分布、KPI指标、重大预警、重要工单进度、成本执行情况等)进行综合呈现。界面设计遵循管理逻辑,支持从宏观到微观的逐层钻取,例如从全厂OEE指标下钻到具体某条故障产线的详细分析。系统支持个性化配置,不同层级的管理者可以关注不同的数据视图。该模块如同设备管理体系的“指挥中心”,使管理者能够快速把握全局、识别问题、评估绩效,从而做出更加及时、科学的管理决策,有效驱动设备管理战略目标的实现。
设备运行周期管理模块专注于关键设备运行状态的监控与统计,支持设备状态的分类管理,包括运行、备用、停止、热备、检修等多种状态。系统可关联设备信息管理模块,将需监控的设备纳入运行管理目录,实现设备台账与运行状态的一体化管理。设备状态切换可手动操作,也可通过对接DCS系统实现自动切换,同时自动统计设备运行时长。该模块与检维修、预防性维修模块联动,在工单生成时自动更新设备状态。系统还集中展示设备隐患与维保需求,支持随时查询设备参数、历史隐患与维修记录。运行数据的统计分析功能可为设备维护计划提供参考,减少人工统计负担。此外,不同设备状态可配置不同的巡检内容,实现运行与巡检业务的有效衔接。定期检查与预测性维护相结合,效果更佳。

互联互通与边缘计算模块作为设备管理系统的神经末梢,负责现场数据的实时采集与初步智能处理。该模块通过部署边缘网关,兼容多种工业协议,实现对各类控制器(PLC)、传感器、智能仪表的无缝接入和数据采集。它不仅在网络层面打通了数据通道,更在边缘侧承担了重要的计算任务:对采集到的原始数据进行就地清洗、滤波和压缩,有效降低云端传输负荷;同时,可运行轻量化的AI模型,实时进行异常检测、特征提取甚至瞬时故障判断。这种“边缘感知、云端优化”的协同模式,提升了系统对现场状态的响应速度,为预测性维护提供了更及时、更高质量的数据基础。该模块是构建企业设备物联网体系、实现数字化转型的关键基础设施。工智道系统支持设备润滑的全程管理与效果跟踪。创新设备完整性管理与预测性维修系统管理模式
设备健康度评估为维修决策提供科学依据。便捷设备完整性管理与预测性维修系统解决方案
设备维保模块支持企业根据设备类型与使用场景制定保养规则,包括保养周期、标准作业程序及所需备件清单。系统依据规则自动生成保养工单,支持按保养类型配置不同表单与审批流程。用户可手动创建或批量导入保养任务,并派发给指定维修人员。维修人员通过移动端记录保养过程,支持现场拍照并附时间戳,确保作业真实性。保养任务支持确认、取消、改期等操作,任务完成后可导出记录归档。系统还支持保养标准的动态维护,标准更新后,未完成工单将同步调整。该模块帮助企业建立周期性与非周期性相结合的保养体系,涵盖点检、清洁、校验等多种场景,提升设备可靠性与使用寿命。便捷设备完整性管理与预测性维修系统解决方案