双向流式滤池存在一个固有的局限性,不能用以生产特别高质量出水。单一滤料双向流式滤池的较细滤料放在上半部下向流滤床的顶部。这使滤床的上半部构成一个快滤池或表面式过滤池,由它得出的水的质量较好也不会超过普通快滤池的水质;滤池的下半部是一个由粗到细的滤池,但在滤床上部出口处的较细颗粒比普通快滤池中成功应用的较细颗粒还要粗。显然,从这个滤床出来的水比下向流滤池产生的水质要差一些。双向流式双层滤料滤池构造比单一滤料双向式滤床要好,其优点是把细砂放在更靠近中间收集管的地方,这样便在由粗到细单一滤料(砂)的上向流床之上组成一个双层滤料(煤一砂)的下向流滤床,较细砂粒的粒度根据实际应用情况决定,这一点上仍有局限性,如果砂粒比普通快滤池中的砂更细,由于必须使它在滤床的下半部构成较好的上向流滤池,则在反冲洗时砂粒会由于太细而被过多地提升到煤层中去。如果要使砂粒的级配在上半部适合于双层滤料滤床,那么砂粒就显得太粗,而使下半部滤床上向流过滤得不到较佳过滤效果,不论哪一半出来的水质都比不上混合滤料滤池的出水水质,对于这样一个双重问题,很难简单地解决。滤池的配水系统要均匀分布水流,确保过滤效果均一性。广东半浸没式滤池

为了克服传统单层级配滤料层水力分级和单层均质滤料层厚度较大的缺陷,研究人员开发了双层滤料和多层滤料。双层滤料就是在滤层上部放置一层粒径较大、密度较小的轻质滤料。双层滤料滤层过滤时,水先通过粗粒径滤料,之后通过细粒径滤料,这样可增加滤料层的截污容量,延长过滤周期,体现理想滤料层的概念。使用较早也较普遍的轻质滤料是无烟煤,无烟煤滤料的密度比石英砂的密度小,粒径比石英砂大,在反冲洗后无烟煤滤料仍保持在石英砂层上面。后来使用的轻质滤料还有人工陶粒、人工合成纤维等。由于受到天然材料的限制,生产中所采用的仍然只有双层和三层滤料。广东半浸没式滤池通过改进滤池设计,能够提高处理能力,适应不同水质条件。

多层滤料滤池系指滤料层有两层或两层以上的滤池,滤料层较多的为三层。多层滤料滤池产水量高、工作周期长、截污能力大,它对节省用地、节约投资以及对旧有水厂挖潜改造有重要意义。传统的单层级配滤料因反冲洗时水力分级的影响,其粒径分布呈现上小下大的“正粒度”排列,过滤过程中就会出现无烟煤滤料表层水头损失增长迅速和滤后水中杂质颗粒提前穿透两种不利后果,其中任何一种都会缩短过滤周期、减少周期产水量,并因中下层滤料基本未发挥截污作用而造成滤料吸附能力的浪费。
我们先看一下虹吸滤池的主要构造,其通常由配水系统、滤料层、冲洗排水槽、进水虹吸管、单格滤池进水槽、集水槽、控制堰、清水管、冲洗虹吸管、冲洗排水管等组成。虹吸滤池的主要构成:工作过程:虹吸滤池的工作过程也包含过滤过程和冲洗过程。先看一下过滤过程:原水由进水槽流入滤池上部的配水槽,经进水虹吸管流入单个滤池的进水槽,再经布水管进入滤池,依次通过滤料层、配水系统,然后流入集水槽,然后经过出水管流入出水井,经控制堰流出滤池。过滤过程中过滤的水头为滤池内的水位和集水槽水位之差,虹吸滤池中较大的过滤水头通常为1.5~2.0m。滤池的反洗过程可以有效延长滤料寿命,维持处理效果。

选择每一滤层的粒径时,应使冲洗水流量相同时滤料膨胀程度也相同。这样可使滤料在重新开始过滤以前重新得到分级。各种材料特别是上层滤料材料的均匀系数必须尽可能的低(不超过1.5),以防止杂质堵塞各滤层的表面。反冲洗流速的增加应与颗粒尺寸和水温成正比,每一滤层必须可以至少膨胀10%~15%。在某些场合下,必须采取措施使反冲洗水流速与水温相适应,以便维持适当程度的膨胀且滤料又没有随排水流失的危险。在冲洗时,很难做到滤料一点不被冲走,所以每年必须补充5%~7%的滤料。在实际应用中,也有用3层或4层密料组成的滤池,相对密度越大且颗粒越小的放在滤床的较底层,例如相对密度为4.2的磁铁砂被用作砂层下的滤料。这种多层滤池和双层滤池一样可改善杂质向深层渗入的情况,但是无论哪种滤池都不能解决必须进行反冲洗这一固有缺点。滤池中的生物膜层能够增强对污染物的去除能力,提升水质。苏州全浸没式滤池定制
滤池的出水水质直接影响后续的消毒和进一步处理。广东半浸没式滤池
压力滤池:压力滤池的特点则包括:下向流过滤方式,可使用单层、双层或多层砂滤料;采用承压式四阀控制,允许的水头损失高达6~7m;池体为钢罐结构,便于将各单元出水连接,从而省去反冲洗设备;移动便捷,适用于临时供水需求;立式滤层较深,而卧式则面积较大;清砂操作不便,且无法观察运行过程;主要适用于厂矿等小规模给水工程。这两种滤池在设计时均需考虑水质要求,并确保运行过程中的稳定性。同时,根据具体的应用场景和需求,选择适当的滤池类型和配置是至关重要的。广东半浸没式滤池