736 Series: Oxygen/Nitrogen by Inert Gas Fusion
The 736 family of Elemental Analyzers is designed for routine measurement of oxygen and nitrogen content of
inorganic materials, ferrous and nonferrous alloys, andrefractory materials using the inert gas fusion technique.
These instruments feature our Cornerstone brand ® software, a custom interface designed specifically for
touch-screen operation. Developed by combining longterm research with customer feedback, this easy-to-use
software gives you complete access to instrument control, analysis settings, diagnostics, reporting, and more—without sacrificing valuable bench space.
氧氮氢分析仪选哪家?给你推荐上海禹重科技!安徽专业分析仪厂家直销
Procedure - Solid Samples
Determine the instrument blank.
Repeat steps 2b through 2g a minimum of three times.
Set the blank following the procedure outlined in the operator's instruction manual.
Instrument calibration/drift correction.
Login a minimum of 3 Standard replicates.
Weigh approximately *** grams of a calibration/drift standard, enter the mass and standard identification into appropriate replicate fields.
Note: LECO Reference Materia***o not require preparation.See preparation statement on the reference material certificate.
江苏LECO氧氮氢分析仪厂家直销简化日常分析所需的炉头进样部分机械维护工作。
Procedure - Solid Samples
Instrument calibration/drift correction.
Place the calibration/drift standard in a *** Nickel Basket, and if applicable, place the sample into the appropriate autoloader position.
Press the Analyze button on the instrument screen. After a short delay, the loading head slide-block will open.
Note: samples using automation should be placed in the appropriate autoloader position before starting the
analysis sequence. Once the sequence has started, the automatic analysis will start and end automatically.
Procedure – Powder/Chip Samples
Instrument calibration/drift correction.
Press the Analyze button on the instrument screen. After a short delay, the loading head slide-block will open.
Place the Nickel Capsule containing the sample into the open port at the top of the loading head.
Press the Analyze button on the instrument screen again, the loading head slide-block will close and the lower electrode will open.
Clean the upper and lower electrode either manually or remove the crucible and press the analyze button to clean with an automatic cleaner if applicable.
Summary
The determination of the amount of oxygen, nitrogen, and hydrogen in iron, steel, nickel-, and cobalt-base alloys represents some of the most important quality metrics for these materials. Oxygen is used to create steel from pig iron by removing excess carbon. Oxygen content must be controlled to limit the amount of carbon monoxide that can be formed during solidification which may cause excessive porosity. Nitrogen is considered both an impurity as well as an important alloying agent. Itcan be present as a nitride or interstitially in its gaseous form. Increased nitrogen content is known to increase yield and tensile strength, thus decreasing ductility and formability. Excessive levels may evolve during solidification thus increasing porosity. High hydrogen content is the primary cause of embrittlement, blistering and flaking due to its high
mobility through the lattice and provides no potential alloying benefits. The ONH836 utilizes a high-power
electrode furnace to quickly and efficiently release the target gases from within the sample, which allows
for a very rapid simultaneous determination of oxygen, nitrogen, and hydrogen.
无需人工干预的全自动清扫系统。广东氧氮氢分析仪供应商
***电极炉头设计,提高脉冲炉热交换效率。安徽专业分析仪厂家直销
Instrument calibration/drift correction
f. Clean the upper and lower electrode manually, or, if applicable, remove the crucible and press the analyze button to clean with the automatic cleaner.
g. Firmly place a graphite crucible on the lower electrode tip.
h. Press the Analyze button on the instrument screen, the lower electrode will close and the analysis sequence will start and end automatically.
i. Repeat steps 3b through 3h a minimum of three times for each calibration/drift standard used.
. Calibrate/drift following the procedure outlined in the operator's instruction manual.
氧氮氢分析仪的常见故障及解决方法仪器启动时显示。没有水流。系统分析电流切断,分析停止。这是水流探测器...
【详情】736Series:Oxygen/NitrogenbyInertGasFusionThe736fam
【详情】美国LECO力可氧氮氢分析仪ONH836氧氮氢联测仪系列软件部分1、用户友好界面的Cornersto...
【详情】Procedure–Powder/ChipSamplesInstrumentcalibration/...
【详情】LECO—YoursourcefortotalanalyticalsolutionsCSCS844a...
【详情】InstrumentHighlightsandFeaturesFeaturesandBenefits
【详情】仪器的亮点和优势:特点和优势·炉头区域LED照明系统·炉头快速拆装的粉尘过滤装置·装有自动旁路阀的可...
【详情】Procedure–Powder/ChipSamplesDeterminetheinstrument...
【详情】氧氮氢分析仪的常见故障及解决方法供电正常、通讯正常,点击确认键后分析仪不工作。这是没有水流,炉子温度...
【详情】