微纳加工技术指尺度为亚毫米、微米和纳米量级元件以及由这些元件构成的部件或系统的优化设计、加工、组装、系统集成与应用技术,涉及领域广、多学科交叉融合,其较主要的发展方向是微纳器件与系统(MEMS)。微纳器件与系统是在集成电路制作上发展的系列**技术,研制微型传感器、微型执行器等器件和系统,具有微型化、批量化、成本低的鲜明特点,微纳加工技术对现代的生活、生产产生了巨大的促进作用,并催生了一批新兴产业。在Si片上形成具有垂直侧壁的高深宽比沟槽结构是制备先进MEMS器件的关键工艺,其各向异性刻蚀要求非常严格。高深宽比的干法刻蚀技术以其刻蚀速率快、各向异性较强、污染少等优点脱颖而出,成为MEMS器件加工的关键技术之一。微纳加工技术的特点:微型化。北京微纳加工中心
目前微纳制造领域较常用的一种微细加工技术是LIGA。这项技术由于可加工尺寸小、精度高,适合加工半导体材料,因而在半导体产业中得到普遍的应用,其较基础的中心技术是光刻,即曝光和刻蚀工艺。随着LIGA技术的发展,人们开发出了比较多种不同的曝光、刻蚀工艺,以满足不同精度尺寸、生产效率等的需求。LIGA技术经过多年的发展,工艺已经相当成熟,但是这项技术的基本原理决定了它必然会存在的一些缺陷,比如工艺过程复杂、制备环境要求高(比如需要净化间等)、设备投入大、生产成本高等。北京微纳加工中心微纳加工技术对现代的生活、生产产生了巨大的促进作用,并催生了一批新兴产业。
飞秒激光微纳加工类型飞秒激光微纳加工的类型可以分为激光烧蚀微加工以及双光子聚合加工。激光烧蚀微加工利用其本身独特的性质使材料瞬间蒸发,而不经历熔化过程,具有优良的加工特性。双光子聚合加工三维微纳结构时利用飞秒激光聚焦点上发生的双光子吸收效应,获得比衍射极限还要小的光响应,可以在多种材料上进行微纳米尺度的加工。对波长特定的激光来说,材料可分为吸收材料和透明材料。飞秒激光对于这些材料的作用机理都不相同。由于自由电子大量存在的缘故,金属具有良好的导热性和导电性。透明材料原本不会吸收这一波段,但是由于飞秒激光可以产生极高的光强,它使材料实现对激光的非线性吸收。
微纳加工中,材料湿法腐蚀是一个常用的工艺方法。材料的湿法化学刻蚀,包括刻蚀剂到达材料表面和反应产物离开表面的传输过程,也包括表面本身的反应。半导体技术中的许多刻蚀工艺是在相当缓慢并受速率控制的情况下进行的,这是因为覆盖在表面上有一污染层。污染层厚度常有几微米,如果化学反应有气体逸出,则此层就可能破裂。湿法刻蚀工艺常常有反应物产生,这种产物受溶液的溶解速率的限制。为了使刻蚀速率提高,常常使溶液搅动,因为搅动增强了外扩散效应。多晶和非晶材料的刻蚀是各向异性的。然而,结晶材料的刻蚀可能是各向同性,也可能是各向异性的,它取决于反应动力学的性质。晶体材料的各向同性刻蚀常被称作抛光刻蚀,因为它们产生平滑的表面。各向异性刻蚀通常能显示晶面,或使晶体产生缺陷。因此,可用于化学加工,也可作为结晶刻蚀剂。在过去的几年中,全球各地的研究机构和大学已开始集中研究微观和纳米尺度现象、器件和系统。
微纳加工氧化工艺是在高温下,衬底的硅直接与O2发生反应生成SiO2,后续O2通过SiO2层扩散到Si/SiO2界面,继续与Si发生反应增加SiO2薄膜的厚度,生成1个单位厚度的SiO2薄膜,需要消耗0.445单位厚度的Si衬底;相对CVD工艺而言,氧化工艺可以制作更加致密的SiO2薄膜,有利于与其他材料制作更加牢固可靠的结构层,提高MEMS器件的可靠性。同时致密的SiO2薄膜有利于提高与其它材料的湿法刻蚀选择比,提高刻蚀加工精度,制作更加精密的MEMS器件。同时氧化工艺一般采用传统的炉管设备来制作,成本低,产量大,一次作业100片以上,SiO2薄膜一致性也可以做到更高+/-3%以内。微机电系统、微光电系统、生物微机电系统等是微纳米技术的重要应用领域。北京微纳加工中心
微纳加工按技术分类,主要分为平面工艺、探针工艺、模型工艺。北京微纳加工中心
在微电子与光电子集成中,薄膜的形成方法主要有两大类,及沉积和外延生长。沉积技术分为物理沉积、化学沉积和混合方法沉积。蒸发沉积(热蒸发、电子束蒸发)和溅射沉积是典型的物理方法;化学气相沉积是典型的化学方法;等离子体增强化学气相沉积是物理与化学方法相结合的混合方法。薄膜沉积过程,通常生成的是非晶膜和多晶膜,沉积部位和晶态结构都是随机的,而没有固定的晶态结构。外延生长实质上是材料科学的薄膜加工方法,其含义是:在一个单晶的衬底上,定向地生长出与基底晶态结构相同或相似的晶态薄层。其他薄膜成膜方法,如电化学沉积、脉冲激光沉积法、溶胶凝胶法、自组装法等,也都广用于微纳制作工艺中。不同的表面微纳结构可以呈现出相应的功能,随着科技的发展,不同功能的微纳结构及器件将会得到更多的应用。目前表面功能微纳结构及器件,诸如超材料、超表面等充满“神奇”力量的结构或器件,的发展仍受到微纳加工技术的限制。因此,研究功能微纳结构及器件需要从微纳结构的加工技术方面进行广深入的研究,提高微纳加工技术的加工能力和效率是未来微纳结构及器件研究的重点方向。北京微纳加工中心