磁控溅射是在阴极靶的表面上方形成一个正交电磁场。当溅射产生的二次电子在阴极位降区内被加速为高能电子后,并不直接飞向阳极,而是在正交电磁场作用下作来回振荡的近似摆线的运动。高能电子不断与气体分子发生碰撞并向后者转移能量,使之电离而本身变成低能电子。这些低能电子较终沿磁力线漂移到阴极附近的阳极而被吸收,避免高能电子对极板的强烈轰击,消除了二极溅射中极板被轰击加热和被电子辐照引起的损伤,体现出磁控溅射中极板“低温”的特点。由于外加磁场的存在,电子的复杂运动增加了电离率,实现了高速溅射。磁控溅射的技术特点是要在阴极靶面附件产生与电场方向垂直的磁场,一般采用永久磁铁实现。磁控溅射镀膜的适用范围:建材及民用工业中。湖北脉冲磁控溅射技术
磁控溅射的基本原理就是以磁场改变电子运动方向,束缚和延长运动路径,提高电子的电离概率和有效地利用了电子的能量。因此在形成高密度等离子体的异常辉光放电中,正离子对靶材轰击所引起的靶材溅射更加有效,同时受正交电磁场的束缚的电子只能在其能量将要耗尽时才能沉积在基片上,这就是磁控溅射具有低温高速两大特点的机理。磁控溅射的特点是成膜速率高,基片温度低,膜的粘附性好,可实现大面积镀膜。该技术可以分为直流磁控溅射法和射频磁控溅射法。深圳反应磁控溅射仪器磁控溅射镀膜就是在真空中利用荷能粒子轰击靶表面,使被轰击出的粒子沉积在基片上的技术。
随着工业的需求和表面技术的发展,新型磁控溅射如高速溅射、自溅射等成为磁控溅射领域新的发展趋势。高速溅射能够得到大约几个μm/min的高速率沉积,可以缩短溅射镀膜的时间,提高工业生产的效率;有可能替代对环境有污染的电镀工艺。当溅射率非常高,以至于在完全没有惰性气体的情况下也能维持放电,即是只用离化的被溅射材料的蒸汽来维持放电,这种磁控溅射被称为自溅射。被溅射材料的离子化以及减少甚至取消惰性气体,会明显地影响薄膜形成的机制,加强沉积薄膜过程中合金化和化合物形成中的化学反应。由此可能制备出新的薄膜材料,发展新的溅射技术,例如在深孔底部自溅射沉积薄膜。
磁控溅射的优点:(1)成膜致密、均匀。溅射的薄膜聚集密度普遍提高了。从显微照片看,溅射的薄膜表面微观形貌比较精致细密,而且非常均匀。(2)溅射的薄膜均具有优异的性能。如溅射的金属膜通常能获得良好的光学性能、电学性能及某些特殊性能。(3)易于组织大批量生产。磁控源可以根据要求进行扩大,因此大面积镀膜是容易实现的。再加上溅射可连续工作,镀膜过程容易自动控制,因此工业上流水线作业完全成为可能。(4)工艺环保。传统的湿法电镀会产生废液、废渣、废气,对环境造成严重的污染。不产生环境污染、生产效率高的磁控溅射镀膜法则可较好解决这一难题。磁控溅射是在低气压下进行高速溅射,为此需要提高气体的离化率。
脉冲磁控溅射工作原理:在一个周期内存在正电压和负电压两个阶段,在负电压段,电源工作于靶材的溅射,正电压段,引入电子中和靶面累积的正电荷,并使表面清洁,裸露出金属表面。加在靶材上的脉冲电压与一般磁控溅射相同!为400~500V,电源频率在10~350KHz,在保证稳定放电的前提下,应尽可能取较低的频率#由于等离子体中的电子相对离子具有更高的能动性,因此正电压值只需要是负电压的10%~20%,就可以有效中和靶表面累积的正电荷。占空比的选择在保证溅射时靶表面累积的电荷能在正电压阶段被完全中和的前提下,尽可能提高占空,以实现电源的较大效率。反应磁控溅射沉积过程中基板升温较小,而且制膜过程中通常也不要求对基板进行高温加热。河北多功能磁控溅射实验室
磁控溅射成为镀膜工业主要方法之一。湖北脉冲磁控溅射技术
相较于蒸发镀膜,真空磁控溅射镀膜的膜更均匀,那么真空蒸发镀膜所镀出来的膜厚度在中心位置一般会薄一点。因此,由于我们无法控制真空蒸发镀膜的膜层的厚度,而真空磁控溅射镀膜的过程中可通过控制时间长短来控制镀层厚度,所以蒸镀真空镀膜不适应企业大规模的生产。反之,溅射镀膜在这方面就比较有优势了。那么相对于蒸发镀膜来说,真空磁控溅射镀膜除了膜厚均匀与可控灵活的优势之外,还有这些特点:磁控溅射镀的膜层的纯度高,因此致密性好;膜层物料灵活,薄膜可以由大多数材料构成,包括常见的合金、化合物之类的;溅射镀膜的沉积速率较低,整体设备相对复杂一些;真空溅射薄膜与作用基底之间的粘合、附着力很好。湖北脉冲磁控溅射技术