传统维护模式中的故障后维护与定期维护将影响生产效率与产品质量,并大幅提高制造商的成本。随着物联网、大数据、云计算、机器学习与传感器等技术的成熟,预测性维护技术应运而生。以各类如电机、轴承等设备为例,目前已发展到较为成熟的在线持续监测阶段,来实现查看设备是否需要维护、怎么安排维护时间来减少计划性停产等,并能够快速、有效的通过物联网接入到整个网络,将数据回传至管理中心,来实现电机设备的预测性维护。以各类如电机、轴承等设备为例,目前已发展到较为成熟在线持续监测阶段,来实现查看设备是否需要维护、怎么安排维护时间来减少计划性停产等,并能够快速、有效的通过物联网接入到整个网络,将数据回传至管理中心,来实现电机设备的预测性维护。实现工业互联网。对电机进行监测,有助于判断电机是否存在故障以及故障的类型,保障电机的稳定性和可靠性。温州降噪监测技术
在数控机床中,刀具的监测对于确保加工质量和提高生产效率至关重要。刀具监测主要包括刀具磨损监测和刀具状态监测。刀具磨损监测可以通过多种方法实现,其中一种常用的方法是利用传感器监测切削过程中的物理参数变化,如切削力、振动和温度等。当刀具磨损到一定程度时,这些物理参数会发生变化,通过监测这些变化可以间接判断刀具的磨损情况。此外,还可以采用直接监测方法,如使用光学或触觉传感器直接观察刀具的磨损情况。除了刀具磨损监测,刀具状态监测也是数控机床中的重要环节。刀具状态监测可以通过实时监测刀具的振动、声音和温度等参数,结合数据驱动的算法构建刀具状态与这些参数之间的映射关系,从而实现对刀具状态的准确监测。这种方法可以帮助及时发现刀具的崩刃、破损和卷刃等失效形式,确保加工质量和安全。总之,数控机床中的刀具监测技术对于提高加工质量和生产效率具有重要意义。通过实时监测刀具的磨损和状态,可以及时发现并处理潜在问题,确保加工过程的稳定性和可靠性。上海NVH监测数据电机监测的主要内容包括温度、振动、电流、声音等方面。
电机状态监测技术是一种了解和掌握电机在运行过程中的状态,以及确定其整体或局部是否有异常或故障的技术。这种技术可以早期发现故障及其原因,并预测故障的发展趋势,从而为设备的维护、修理和更换提供决策依据。电机状态监测技术主要包括以下几种:振动监测技术:通过对电机运行过程中产生的振动信号进行测量和分析,可以判断电机是否存在故障。常见的振动监测方法包括加速度计法、速度计法和位移计法等。温度监测技术:通过埋置在电机内部的温度传感器,对电机运行过程中的温度信号进行检测和分析,可以判断电机是否存在过热等故障。温度监测是电机状态监测中常用的一种方法。电流监测技术:通过对电机的电流进行监测,可以判断电机是否正常运行。例如,电流过高或过低可能意味着电机受阻或负载过重。声音监测技术:通过采集电机的声音信号,并对其进行分析和处理,可以判断电机是否存在故障。声音监测技术常用于电机的故障诊断和预测性维护。光学监测技术:利用光学传感器或摄像头等设备,对电机的运行状态进行实时监测和分析。光学监测技术可以帮助设备操作员及时发现异常情况,例如电机的偏移、卡住或损坏等。
电机状态监测和故障诊断技术是一种了解掌握电机在使用过程中状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术,电机状态监测与故障诊断技术包括识别电机状态监测和预测发展趋势两方面。设备状态是指设备运行的工况,由设备运行过程中的各种性能参数以及设备运行过程中产生的二次效应参数和产品质量指标参数来描述。设备状态的类型包括:正常、异常和故障三种。设备状态监测是通过测定以上参数,并进行分析处理,根据分析处理结果判定设备状态。对设备进行定期或连续监测,包括采用各种测试、分析判别方法,结合设备的历史状况和运行条件,弄清设备的客观状态,获取设备性能发展的趋势规律,为设备的性能评价、合理使用、安全运行、故障诊断及设备自动控制打下坚实基础。先进的电机监测技术,如基于数学模型和人工智能的故障诊断方法,可以实现对电机状态的精确估计和预测。。
设备状态监测及故障预警若干关键技术可归纳如下:(1)揭示设备运行状态机械动态特性劣化演变规律。设备由非故障运行状态劣化为故障运行状态,其机械动态特性通常有一个发展演变过程(2)提取设备运行状态发展趋势特征。在役设备往往具有复杂运行状态,在长历程运行中工况和负载等非故障因素会造成信号能量变化,故障趋势信息往往被非故障变化信息淹没,需较大程度上消除非故障变化造成的冗余信息,进而构建预测模型。动力装备全寿命周期监测诊断方面:实现了支持物联网的智能信息采集与管理、全生命周期动态自适应监测、早期非线性故障特征提取。优化重构出综合体现装备运行工况及表现的新参数,提高异常状态辨识的适应性与可靠性,基于运行过程信息反映装备劣化趋势与故障发展规律,来提高故障早期辨识能力。基于物联网和网络化监测诊断将产品监测诊断与运行服务支持有机集成一体,在应用中实现动力装备常见故障诊断准确率达80%以上。应用于风力大电机、空压机等大型动力装备的集群化诊断领域。提供了基于物联网的动力装备全生命周期监测与服务支持创新模式,提供了其生命周期的远程监测诊断与维护等专业化服务。在实际工业环境中,存在许多环境噪声,可能干扰电机监测系统的信号。需要采用高度灵敏的传感器和滤波技术。常州减振监测价格
监测电机各个相位之间的电流和电压关系,以检测是否存在相位不平衡或其他电气问题。温州降噪监测技术
预测性维护对制造业在节省成本损耗、提升企业的生产效率和产业智能化升级具有非常重要的意义。国内工业现场的存量设备数目相当可观,绝大多数还没采用有效的预测性维护方案,尤其是大型旋转类设备,一般都是主要生产运行设备而且故障率相对较高,需要重点监控和维护。通过振动分析和诊治对旋转类设备进行预防性维护无疑向我们展示了一个极具发展潜力的市场。预测性维护在不久的未来将愈加凸显工业物联网中关键的应用优势,市场规模及需求将快速增长工业设备的预测性维护的市场需求显而易见。预防性维护想要产生业务价值、真正大规模发展却是遇到了两个难题。首先项目实施成本过高,硬件设备大多依赖进口。比如数采传感器、设备等。这导致很多企业在考虑投入产出比时比较犹豫。其次是技术需要突破,目前大多数供应商只实现了设备状态的监视,真正能实现故障准确预测的落地案例寥寥无几。供应商技术和能力还需要不断升级。预防性维护要想实现更好的应用,要在以下方面实现突破。实现基于预测的维护,提升故障诊断及预测的准确率提高软硬件产品国产化率,降低实施成本。温州降噪监测技术