高速信号传输技术的简单性
对于大多数电子设计工程师,高速信号传输技术,即SI、PI和EMC真的很难、很复杂吗?事实并非如此。对于大多数电子设计工程师来讲,掌握关于电磁兼容、信号完整性和电源完整性一般性的原理、概念和技术,就可以很好地从事研发工作了,深入掌握这些技能则是专业工程师的事。在这个意义上来说,掌握SI、PI和EMC相关技术是很容易的事情。
掌握一般性的原理、概念和技术为什么容易呢?对于大多数电子设计工程师,只需掌握以下这些知识。
数字信号的传输速率和其传输通道的长度是高速信号传输的两个不可分割的组成部分;设备高速信号传输厂家现货
(4)保形传输保形传输是指电信号在传输通道上进行传输的过程中,其信号失真度被控制在一定范围内,使得信号接收器能够正确接收该信号。我们开发电子设备,其中一项重要工作是为所有的电信号设计合适的传输通道,以确保电信号在传输通道上进行保形传输。电子设计工程师在开发电子产品时,对于模拟信号传输,其设计目标是要确保模拟信号在传输过程中基本无失真;对于数字信号传输,其设计目标是要确保数字信号在传输过程中,其失真度保持在一定范围内,使得信号接收器能够正确识别。我们可以用交通运输作为类比来理解信号传输的概念。当谈到交通运输的概念时,我们不但显性地指明交通工具,如汽车、火车、高速列车或飞机,也隐性地提及与交通工具相对应的运输通道,如公路、铁路、高速铁路或空中航道。交通工具与运输通道构成完整的交通运输概念,脱离开交通工具谈论交通运输没有实际意义,脱离运输通道谈论交通运输也没有实际意义,如汽车运输是指汽车和与之对应的公路或高速公路,火车运输是指火车和与之对应的铁路,高铁运输是指高速火车和与之对应的高速铁路,飞机运输是指飞机和与之对应的空中航道。交通工具与运输通道是相互匹配的。设备高速信号传输厂家现货高速信号传输的传输通道;
2)传输通道在本书中,传输通道专指电信号的有线传输通道。电信号的传输通道是指由电信号的传输路径和其返回路径共同构成的线路。需要特别强调的是,传输通道包括信号的传输路径线路和该信号的返回路径线路两个相互依存的部分,二者缺一不可。
(3)信号传输在本书中,信号传输专指电信号的信号传输。我们把电信号和它的传输通道一起称为信号传输。对于信号传输的概念而言,电信号和其传输通道是相互依存的,二者缺一不可。脱离电信号的传输通道讨论信号传输是无意义的,同样地,脱离传输通道上的电信号讨论信号传输也是无意义的,对高速信号传输来说更是如此。
①理解电阻、电感、电容等特性,其本质就是对电流、电流变化和电压变化具有的抵抗力,以及电阻器、电感器、电容器几种器件不仅具有主特性,在高速信号传输电路中还表现出其他的特性。
②掌握高速信号传输、信号完整性、电源完整性和电磁兼容性的概念,以及高速信号传输技术与信号完整性、电源完整性和电磁兼容性技术的关系。
③认识信号传输线、供电传输线、信号回路、供电回路、信号传输线的特征阻抗、供电中继电容器等概念和意义,并纠正对地、屏蔽、信号回路几个概念的误解。
④了解信号类型、电源类型、信号传输线类型及其适合传输的信号类型、电源传输线类型及其适合传输的电源类型、供电中继电容器类型,以及各种信号传输线和电源传输线的屏蔽效能对比。实际上,掌握了这些,我们就从本质上了解了高速信号传输的原理和本质,综合考虑工程化因素(如产品成本、可制造性和可实现性等),结合使用相关的设计、仿真和测试工具,就可以很轻松地进行高速信号传输设计和问题的分析。 高速信号传输的信号完整性;
高速信号和处理需要考虑三部分设计:
高速逻辑时序设计
高速电路散热设计
高速信号传输设计
1、信号传输的相关概念
概念:电信号、传输通道、信号传输、保形传输
重点:模拟信号可以看作“高速”信号,比较好整体不失真
数字信号失真度能够被控制在一定的范围内。
2、数字信号的特点:
(1)时域特点:周期,和上升时间
(2)频域特性:波形是时域的表现,频谱是频域的表现,通过傅里叶变换
(3)电信号的传输速度:与介质常数有关
(4)信号完整性:SignalIntegrity
(5)电源完整性:PowerIntegrity
(6)电磁兼容性:ElectroMagneticCompatibility(EMC) 高速信号的界定标准;设备高速信号传输厂家现货
高速信号传输技术的内涵;设备高速信号传输厂家现货
克劳德高速数字信号测试实验室
②数字电路散热设计是数字电路设计工程师必备的第二项基本技能。一方面,数字集成电路的发展趋势是芯片的高集成度和小体积;另一方面,数字信号处理能力和速度在不断提升,必然带来数字电路功耗和热耗的增大。以上两方面的原因共同导致电路单位面积的热流密度增加。当热流密度增加到一定程度时,自然散热方式已经不能满足电路的散热需要,必须考虑并采取合适的散热措施,才能确保其在一定环境温度下正常工作。 设备高速信号传输厂家现货
高速信号的传输过程分析 在高速信号调试时工程师必须首先调试并验证其设计是否符合物理层规范。在此阶段,信号完整性(如眼图和抖动)是关键问题,很多这种验证和调试是通过使用伪随机码序列(PRBS)或循环测试码,并结合示波器及示波器厂家提供的串行数据眼图和抖动分析软件来完成的。在确保物理层信号质量没有问题后,串行信号从测试码变为8b/10b编码字符序列,此时系统级问题成为调试的重点,问题可能会出现在物理层-链路层域(涉及信号完整性和数据完整性的交叉领域)。这时,就需要对物理层信号实现解码分析。对于现代的高速串行系统,系统之间的协调工作显得更为突出,协议间的任何也会导致整个系统出现问题,因此...