载药超声微泡造影剂另一种选择是通过赋予超声微泡生物启发策略,其中天然细胞膜可以用作构建超声微泡的材料。天然细胞膜具有固有的合适特性,如生物相容性、免疫逃逸、自我识别和主动靶向特性。已有研究表明,血小板生物纳米微泡对血管损伤具有优越的靶向能力,可用于超声造影成像。另一种可用于靶向***的候选细胞是白细胞或巨噬细胞,因为它们具有可以特异性结合***斑块中VCAM-1受体的表面蛋白。为了增强细胞膜的降解,可以将超声微泡与光热剂结合,从而随着温度的升高,增加了现场降解的速度,从而提高了药物在病变部位的释放速度。用于输送气体、药物和核酸,这些载体与超声波、光热、pH和光(刺激触发)超声微泡相结合。纳米超声微泡显影
声空化是在声压场作用下液体中蒸气泡的形成和坍缩。空化一般归类为两种类型,稳定空化和惯性空化。当气泡经历较大的径向振荡并剧烈坍缩时,惯性空化会产生宽带噪声发射,从而对组织造成损伤。利用超声将靶组织附近的载药回声脂质体(ELIP)碎片化,有可能在药物或***效果上产生一个大的时间峰值,而不是依赖于更渐进的被动释放,因此优化超声参数很重要。血管细胞暴露于1MHz至1.5MHz脉冲超声,峰值压力幅值在2MPa至36MPa之间,会发生血管渗漏和细胞凋亡,但Kathryn等人验证了低强度连续波(CW)超声(峰值压力幅值0.49MPa)增强脂质纳米泡在离体小鼠主动脉中的传递的假设。他们的研究表明,1MHzCW超声通过形成稳定的空化,增加了脂质体纳米泡在内皮细胞中的运输。因此,需要更多的研究来探索超声参数范围的安全性和有效性。纳米超声微泡显影超声照射联合纳米微泡的生物学效应。
靶向超声造影剂的一个潜在***应用是用于基因***。腺病毒和质粒报告基因的非特异性区域递送已经使用超声定向方法完成。更具体地说,腺病毒或质粒载体已被纳入基于白蛋白的超声造影剂中,并使用超声递送到心肌中以破坏靶区域的微泡。携带编码VEGF的质粒的微泡已被用于在超声应用后诱导大鼠心肌血管生成。然而,传统的微球是带负电荷的,对带负电荷的RNA和DNA分子的细胞转染效率较低。Tiukinhoy等人开发了一种带正电的脂质体,具有超声可检测的回声特性。利用血管内超声系统,他们能够在icam-1靶向超声定向基因转染后,在HUVEC细胞中传递和检测荧光素酶基因表达。DNA和微泡的孵育可导致DNA与外壳融合,从而促进共注射。早期的研究表明,通过静脉注射白蛋白微泡,将质粒DNA结合到外壳上,再加上超声波,基因可以传递到心肌。随后的研究开发了将DNA纳入脂质微泡壳的技术,在静脉注射和超声后进行类似的局部转染。虽然有使用静脉注射成功转染的报道,但一项比较静脉注射和动脉注射含有微泡的质粒的研究得出结论,动脉注射在实现局部组织转染方面的效率是静脉注射的200倍。
通过将靶向指定表面标记物的配体附着在载药微泡的外部,可以实现更特异性的药物递送。例如,内皮表面标记物是特别有吸引力的靶标,因为某些标记物在血管生成区域过表达,而靶向微泡已被证明能粘附这些标记物。超声可以局部应用于靶向结合的微泡,从而在表面标记物表达的区域选择性地递送药物。***个成功的靶向超声造影剂是在20世纪90年代末使用亲和素-生物素粘连开发的。对于体内成像,开发了一个三步流程。首先,给药一种生物素化单克隆抗体,该抗体与血块内的纤维蛋白结合。然后给药Avidin,它将生物素结合在单克隆抗体上。***,给予生物素化的超声造影剂,它结合了亲和素分子的暴露端。这种超声造影剂靶向的方法导致血栓的声信号增加了四倍。气泡将改变血管壁,允许药物剂外渗,通过将微泡与颗粒和染料共同注射,可评估血管外药物递送的可行性。
超声联合纳米微泡进行核酸输送超声联合纳米微泡进行DNA传递。不考虑超声穿孔现象,建议采用US与带核酸的微泡相互作用来提高传输效率。这种策略也可能有助于遗传物质的位点特异性释放,从而减少非共振组织转染。通过纳米微泡转移基因已经采用了几种技术,从基因的并发管理到纳米泡系统内的内涵。有多种方法,包括利用阳离子脂质组成纳米气泡的外壳用于DNA的静电附着,在制备过程中直接将DNA物理组装在外壳中,在外壳上应用阳离子聚合物层用于DNA的静电相互作用,携带DNA的纳米微泡载体的共价结合以及利用兼容的DNA链建立纳米微泡。分析发现,在体外,基于脂质的纳米微泡比基于白蛋白的纳米微泡引起几次基因转染。此外,在小鼠肝脏中也观察到脂基纳米微泡的主要基因转移。亚微米大小的气泡与传统的手持式超声检测仪器相结合,已被证明是一种高效的基因转移试剂。亚微米尺度的气泡被开发并建议作为一种有前景的基因传递方法。微泡表面的电荷和配体可以用来增加靶向的特异性。纳米超声微泡显影
纳米微泡的直径通常在150-500纳米之间,是药物分布的诱人场景并且与微泡相比已证明可以改善聚集和保留。纳米超声微泡显影
将配体附着在微泡表面的基本方法有两种:要么通过直接共价键,要么通过生物素-亲和素连接。生物素-亲和素连接是一种直接的技术,其中生物素化的配体通过亲和素桥连接到生物素化的微泡上。尽管生物素-亲和素连锁在概念验证和临床前靶向研究中很有用,但免疫原性使其无法转化为人类。共价连接是更可取的和可以在创建微泡壳之前或之后进行。偶联到预形成的微泡上的策略包括通过碳二亚胺和n-羟基磺基琥珀酰亚胺将配体的氨基与微泡壳上的羧基结合,或者可选地将配体上的巯基与微泡壳上的马来酰亚胺结合。关于偶联化学的更多细节可以在A.L.Klibanov**近的一篇综述中找到。对于脂质包被的药物,使用预形成的配体-脂聚合物的优点是,在临床环境中,从微泡产生到给药到患者体内所需的步骤更少。然而,通过后期连锁,通过对预形成的微泡进行一系列修饰,可以更有效地利用配体。纳米超声微泡显影