FeAl3等化合物[2].Lu等人[3]对铝3A21和镀锌钢板采用LEI焊接,发现在界面区域形成连续且致密的金属间化合物层,厚度约为3~4μm,其成分主要是Fe2Al5和[4]对JSC270CC冷轧钢板和A6111-T4铝合金采用双光束激光焊接,发现中间化合物层主要为Fe3Al和FeAl.宋新华等人[5]采用激光深熔钎焊的方法对6061铝合金和H200YD+ZF镀锌钢使用ER4043焊丝进行搭接,发现金属间化合物主要为(Al,Si)13Fe4等.Cao等人[6]通过CMT焊接实现AA6061与Q235镀锌钢板的搭接,发现中间化合物层包括γ-Fe固溶体,Fe3Al,FeAl2,FeAl3,Fe2Al5和α-Al-Si共晶化合物.Zhang等人[7]采用MIG熔钎焊对铝合金2B50和不锈钢1Cr18Ni9Ti进行搭接,用4043Al-5Si做焊丝,发现中间化合物为.Liu等人[8]采用激光熔钎焊将5052铝合金和钢ST07Z异种金属进行搭接,使用纯铝粉作为填充材料,发现金属间化合物.Agudo等人[9]对A6061T4铝合金和镀锌钢板DX56D进行CMT焊接,发现中间化合物层为Fe2Al5和FeAl3.试验采用ER4043焊丝,对7075铝合金和镀锌钢板进行CMT熔钎焊,对接头的微观组织和力学性能进行更深一步的研究.1试验方法试验材料为7075铝合金和DC51D镀锌钢板,所用的焊丝为ER4043,其成分为AlSi5(质量分数,%)。超硬铝属Al一Cu—Mg—Zn系;江苏6061铝合金销售电话
5A06铝合金薄板搅拌摩擦焊工艺[A];中国工程物理研究院科技年报(2005)[C];2005年9刘杰;;铝合金车体搅拌摩擦焊技术应用现状及发展趋势[A];动车、客车学术交流会论文集(动车分册)[C];2012年10张婧;黄珲;封小松;赵慧慧;李颖;郭立杰;;薄壁铝合金异种材料微搅拌摩擦焊工艺特性[A];第二十次全国焊接学术会议论文集[C];2015年中国重要报纸全文数据库**条1唐佩绵;搅拌摩擦焊应用于钢材的试验研究[N];世界金属导报;2016年2吴思;十年攻关路五年飞天行[N];中国航天报;2014年3柴鹏;**性的固相焊接技术——搅拌摩擦焊[N];中国航空报;2012年4宗合;我国搅拌摩擦焊技术获突破发展[N];中国航空报;2017年5栾国红南利辉;搅拌摩擦焊:促进飞机制造技术发展[N];中国航空报;2004年6本报记者王慧;搅拌摩擦焊缘何成为铝合金焊接技术的主角?[N];中国有色金属报;2016年7张爱清;中国首台机器人搅拌摩擦焊系统推介会在制造所举行[N];中国航空报;2013年8本报记者焦静波;将小技术做成大产业[N];中国航空报;2011年9王姝书;突出重围“乘上”轨道交通[N];中国航天报;2014年10柴鹏;先进技术带来跨越式发展[N];中国航空报;2012年中国博士学位论文全文数据库前9条1李艺君。5A06铝合金多少钱用于机械制造、运输机械、动力机械及航空工业等方面;
搭接量对LY12铝合金搅拌摩擦增材制造成形的影响[J];南昌航空大学学报(自然科学版);2014年03期【二级参考文献】中国期刊全文数据库**条1陈峥;刘峥;;厚板铝/镁合金红外热源辅助搅拌摩擦焊力学性能与组织分析[J];焊接技术;2014年09期2Kwang-JinLEE;Eui-PyoKWON;;AA6061-T6与AZ31合金异种搅拌摩擦焊接头的微观组织(英文)[J];TransactionsofNonferrousMetalsSocietyofChina;2014年07期3AlirezaMASOUDIAN;ArvinTAHAEI;AtefehSHAKIBA;FariborzSHARIFIANJAZI;JamshidAghazadehMOHANDESI;;AZ31-O镁合金和6061-T6铝合金搅拌摩擦焊接头的显微组织和力学性能(英文)[J];TransactionsofNonferrousMetalsSocietyofChina;2014年05期4尚晶;王克鸿;周琦;张德库;黄俊;李广乐;;ER4043焊丝Mg/Al异种金属冷金属过渡焊接接头组织及性能研究(英文)[J];稀有金属材料与工程;2013年07期5PooyaPOURAHMAD;MehrdadABBASI;;Al6013/Mg搅拌摩擦焊接的材料流动及相变(英文)[J];TransactionsofNonferrousMetalsSocietyofChina;2013年05期6陈影;付宁宁;沈长斌;葛继平;;镁铝异种金属搅拌摩擦焊搭接接头组织与性能分析[J];焊接学报;2012年07期7陈玉华;倪泉;柯黎明;;Ti/Al异种合金搅拌摩擦焊搭接接头的界面特性。
因此Al元素和Fe元素在界面处可能发生扩散或者产生金属间化合物.图2焊缝的宏观形貌AppearanceofCMTweld-brazedjoint为了进一步分析界面反应层的产物,对界面反应层的2处和3处进行EDS能谱分析,结果如表1所示.可以看出2处Al,Fe,2处靠近焊缝,根据Fe-Al相图可知,2处成分主要为FeAl3.而3处的Al,Fe,Al元素与Fe元素的比例约为5∶2,根据Fe-Al相图可知3处的成分为Fe2Al5.为了进一步分析界面层化合物的成分,对从界面断裂试件断裂面进行X射线衍射分析,如图5所示.从图中可以看出,界面断裂处的化合物有铝和Fe2Al5,这与扫描电子显微镜的结果相符.产生金属化合物层的主要原因是,电弧的温度较高,镀锌层的熔化蒸发,导致铁与铝直接接触,且铁和铝形成金属间化合物的速度远远大于液体铝向钢表面的扩散速度[10],因此熔化的铁与铝在界面处产生金属间化合物.图3焊缝的微观组织形貌Microstructureofweld表1EDS能谱分析(原子数,%)Table1EDSenergyspectrumanalysis位置AlZnFeSiMgMnCu可能相α图4界面层线扫描分析EDSanalysisofinterfacelayer图5界面层处物相分析XRDanalysisininterfacelayer图3c为焊缝区的放大,对图中4处和5处进行EDS能谱分析。以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。
OH)2分解出来的水分等,其反应式如下:3H2O(水蒸气)+2Al=Al2O3+6[H](1)含镁铝合金由于还发生下列反应,更容易吸收氢:H2O(水蒸气)+Mg=MgO+2[H](2)另外,金属炉料或回炉料带入的油污、有机物、盐类熔剂等与铝液反应也能生成氢:4mAl+3CmHn=mAl4C3+3n[H](3)镁、钠、锂可以改变铝的表面的氧化膜,使活性氢原子容易进入;金属氟和铍则能在铝的表面形成更致密的氧化膜,降低氢向铝液或铝合金中扩散的速度,对铝合金起到保护作用。形成氢化物的元素,如钙、钛、锂、铯等金属均能强烈地扩大氢在铝液中的溶解度。不同温度下活性氢原子在铝液或铝合金中的溶解度见表1。4.气孔对铝合金铸件性能的影响对铝合金性能的影响主要表现在能使铸件组织致密度降低,力学性能下降。为此,在铝合金铸件生产实践中,加强对气孔等级对力学性能的影响研究,通过控制等级来保证铝合金铸件品质是非常重要的。等级评定,低倍检验按GB10851-89进行,当有争议时按表2规定执行;X射线照相按GB11346-89铝合金铸件分级标准执行,该标准选用目前工业生产中常用的两种合金ZL101(Al-Si-Mg系)和ZL201(Al-Cu-Mn系),并在T4状态测定бb和σ5的试验结果表明。成为理想的结构材料;5A06铝合金多少钱
其特点是硬度大,但塑性较差。江苏6061铝合金销售电话
在相对湿度大的气氛中溶炼和浇注铝合金,铸件中的尤其严重。这就是我们在生产中常常有人纳闷干燥的季节总比多雨潮湿的时节铝合金铸件缺点少些的原因。一般说来,对铝合金而言,如果结晶温度范围较大,则产生网状的机率也就大得多③。这是因为在一般铸造生产条件下,铸件具有宽的凝固温度范围,使铝合金容易形成发达的树枝状结晶。在凝固后期,树枝状结晶间隙部分的残留铝液可能相互隔绝,分别存在于近似封闭的小小空间之中,由于它们受到外界大气压力和合金液体的静压作用较小,当残留铝液进一步冷却收缩时能形成一定程度的真空(即补缩通道被阻塞),从而使合金中过饱和的氢气析出而形成。3.形成气孔的氢气的来源与析出铝合金中气孔的产生,是由于铝合金吸气而形成的,但气体分子状态的气体一般不能溶解于合金液中,只有当气体分子分解为活性原子时,才有可能溶解。合金液中气体能溶解的数量多少,不仅与分子是否容易分解为活性原子有关,还直接与气体原子类别有关。在铝合金熔炼过程中,通常接触的炉气有:氢气、氧气、水蒸气、二氧化碳、二氧化硫等,这些气体主要是由燃料燃烧后产生的,而耐火材料、金属炉料及熔剂、与气体接触的工具等也可以带入一定量的气体。江苏6061铝合金销售电话
上海缅迪金属集团有限公司注册资金3000-5000万元,是一家拥有11~50人***员工的企业。公司自成立以来,以质量为发展,让匠心弥散在每个细节,公司旗下[ "铝合金板棒切割及销售", "铜合金板棒切割及销售", "钛合金材料切割销售" ]深受客户的喜爱。公司从事冶金矿产多年,有着创新的设计、强大的技术,还有一批**的专业化的队伍,确保为客户提供质量的产品及服务。公司凭借深厚技术支持,年营业额度达到1亿元以上,并与多家行业**公司建立了紧密的合作关系。