超声波诱导的微泡破坏被提出作为一种将*物和基因局部递送到特定靶**(包括心脏)的新技术。超声可通过空化效应引起***和细胞膜的短暂非致死性穿孔,从而改善转染。超声也被证明可以上调几种细胞修复基因的活性,这些基因也有助于转染。大多数超声增强转染技术使用微泡包裹表达载体,直到到达转染位点;之后使用超声探针将气泡击破,从而将物质分布在特定的感兴趣区域。微泡方法先前已被用于将胶体颗粒输送到微血管后的**中断裂。超声诱导的含有DNA的白蛋白包被微泡的破坏已被证明可***增加人胚胎肾细胞中的基因表达,并增强阳离子脂质介导的基因向原发性**的转移。然而,目前尚不清楚超声波是否可以促进纯质粒DNA的转染。Lawrie等人研究了超声诱导的对载质粒微球的破坏是否能在不损害内皮细胞层功能活性的情况下有效地将基因转移到冠状动脉血管壁上。超声可能成为将遗传物质导入**靶细胞的一种新的有效且安全的手段。虽然确切的机制尚不清楚,但微球破裂后,会使膜流动性局部增加,从而增强细胞对***化合物的摄取。纳米微泡的直径通常在150-500纳米之间,是药物分布的诱人场景并且与微泡相比已证明可以改善聚集和保留。北京超声微泡药物
成像效果PLCM:体外和体内实验表明,PLCM在不同的超声条件下具有出色的回声特性。更重要的是,在相同的超声参数和浓度下,PLCM的成像时间比SonoVue(商用微泡)长得多24。脂质微泡UCAs:药效学实验表明,脂质微泡UCAs给药剂量为0.01ml/kg时,所有实验兔均获得满意的肾脏、肝脏声学图像,造影剂填充均匀,与周围组织分界清晰。脂质微泡肾脏造影时,其峰值减半时间为603±47s,廓清时间为726±6s;肝脏造影时其峰值减半时间为388±97s,廓清时间为718±89s,可以满足临床应用要求8。全氟丙烷人血白蛋白微球注射液:96例不孕症患者分为两组,分别应用全氟丙烷人血白蛋白微球注射液和SonoVue进行子宫输卵管造影,两组超声造影结果对比,显影清晰率、图像质量及即时疼痛指数无统计学差异,一致性较好。陕西超声微泡价格微泡表面的加载也可以通过配体-受体相互作用来实现。
超声造影剂通常是壳体包封、气体填充的微泡,直径约为1-10微米,壳通常由脂质、蛋白质或聚合物组成。当注入血液时,这些微泡的高可压缩性相对于周围的血液和组织,以及它们对超声波的高度非线性反应,导致所得到的超声图像中的血液组织对比度强烈增强1214。二、产生谐波调制增强信号在超声调制光学成像技术的基础上,结合高灵敏度的激光回馈技术提出了超声调制激光回馈技术。在透明溶液中,超声微泡造影剂可以增强超声调制激光回馈信号,并产生谐波调制,通过检测回馈基波和谐波信号增强量的方法可提高成像对比度5。三、利用非线性脉冲压缩算法提高对比度一种使用Golay相位编码、脉冲反转和幅度调制(GPIAM)的技术用于微泡造影剂成像。该技术通过增加入射波形的时间带宽积来提高对比组织比(CTR),使用非线性脉冲压缩算法在接收时压缩信号能量。与传统的脉冲反转幅度调制序列相比,使用8芯片GPIAM序列观察到CTR提高了6.5dB。但GPIAM编码使用四个输入脉冲,会导致帧率降低。该技术通过对微泡响应进行相位编码并随后使用非线性匹配滤波算法进行压缩,以增强造影剂的信号,同时保持分辨率并抑制组织信号。
新型超声微泡造影剂的安全性探索近年来,通过流聚焦技术合成的单分散微泡在体内外研究中显示出较好的安全性。在大鼠和猪的左心室体内研究中,与三种商业多分散超声造影剂和一种研究级多分散造影剂相比,单分散微泡直径为4.2μm,能穿过肺血管,回声信号至少与多分散造影剂一样长,且每注入一个气泡的平均回波功率灵敏度至少是多分散造影剂的10倍。通过注射400和2000倍成像剂量进行安全性评估,未发现生理或病理变化,表明由流聚焦形成的单分散脂质涂层微泡在体内使用是安全的2。综上所述,超声微泡造影剂总体安全性较高,但仍需在临床应用中谨慎使用,密切关注患者的反应和潜在风险。同时,随着技术的不断发展,新型超声微泡造影剂的安全性也在不断探索和验证中。将配体附着在微泡表面的基本方法有两种:要么通过直接共价键,要么通过生物素-亲和素连接。
超声造影剂,以充气微泡的形式,在灌注监测中越来越受欢迎;它们被用作分子显像剂。微泡是由生物相容性材料制成的,它们可以静脉注射,有些被批准用于临床使用。超声照射可以破坏微泡。这种破坏现象可应用于靶向给*和增强*物作用。超声场可以聚焦在目标**和***上;因此,可以提高***的选择性,减少不良的副作用。微泡增强超声能量在**中的沉积,并作为空化核,增加细胞内*物传递。在血管内施用微泡和质粒DNA后应用超声的身体区域观察到DNA传递和成功的**转染。在几个临床试验中,通过溶栓剂和微泡的共同作用,加速了超声区域的血凝块溶解。**令人兴奋的应用之一可能是基因***。基因***是***多种**的一种很有前景的工具,但目前的临床应用受到安全有效的局部基因递送到特定**或***系统的发展的阻碍。在表征遗传**和理解蛋白质转录方面已经取得了巨大的进步,但在将遗传物质传递到细胞中进行***方面进展相对较少。非**基因传递可以通过直接注射DNA来实现,但这种方法通常存在转染效率低和基因产物短暂表达的问题。**载体***提高转染的效力,因为特定的**机制已经专门进化到引入外源DNA进入哺乳动物细胞,但**蛋白引起免*靶宿主/**内的反应。**近。脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。贵州超声微泡品牌
些方法已经被引入和优化,以获得可复制的尺寸,生物相容性,生物降解性和高成像稳定性的回声特性。北京超声微泡药物
在超声调制光学成像技术的基础上,结合高灵敏度的激光回馈技术提出了超声调制激光回馈技术。研究表明,在透明溶液中,超声微泡造影剂可以增强超声调制激光回馈信号,并产生谐波调制,通过检测回馈基波和谐波信号增强量的方法可提高成像对比度;而在仿生物组织环境中,超声微泡造影剂可***衰减超声调制激光回馈信号,通过检测回馈基波和谐波信号衰减量的方法可提高成像对比度5。
超声微泡造影剂很大程度上是药物制造业发展的副产品,但是探测微泡的成像技术却是深入研究微泡与超声波之间物理作用的直接产物。这种物理现象的研究可追溯到100年前LordRayleigh描述水中自由空气微泡在声的作用下发生共振现象开始6。可使微气泡稳定的方法包括:微气泡表面包被一层薄的柔韧外壳(通常为脂质),内部使用低溶解度的氟碳类气体。此种微泡造影剂可稳定地在心血管系统中再循环,半衰期长达数分钟之久6。 北京超声微泡药物