SiP技术特点:制造工艺,SiP的制造涉及多种工艺,包括:基板技术:提供电气连接和物理支持的基板,可以是有机材料(如PCB)或无机材料(如硅、陶瓷)。芯片堆叠:通过垂直堆叠芯片来节省空间,可能使用通过硅孔(TSV)技术来实现内部连接。焊接和键合:使用焊球、金线键合或铜线键合等技术来实现芯片之间的电气连接。封装:较终的SiP模块可能采用BGA(球栅阵列)、CSP(芯片尺寸封装)或其他封装形式。SiP 封装制程按照芯片与基板的连接方式可分为引线键合封装和倒装焊两种。SiP系统级封装作为一种集成封装技术,在满足多种先进应用需求方面发挥着关键作用。广东陶瓷封装技术
系统级封装的简短历史,在1980年代,SiP以多芯片模块的形式提供。它们不是简单的将芯片放在印刷电路板上,而是通过将芯片组合到单个封装中来降低成本和缩短电信号需要传输的距离,通过引线键合进行连接的。半导体开发和发展的主要驱动力是集成。从SSI(小规模集成 - 单个芯片上的几个晶体管)开始,该行业已经转向MSI(中等规模集成 - 单个芯片上数百个晶体管),LSI(大规模集成 - 单个芯片上数万个晶体管),ULSI(超大规模集成 - 单个芯片上超过一百万个晶体管),VLSI(超大规模集成 - 单个芯片上数十亿个晶体管),然后是WSI(晶圆级集成 - 整体)晶圆成为单个超级芯片)。所有这些都是物理集成指标,没有考虑所需的功能集成。因此,出现了几个术语来填补空白,例如ASIC(专门使用集成电路)和SoC(片上系统),它们将重点转移到更多的系统集成上。重庆IPM封装精选厂家随着SiP系统级封装、3D封装等先进封装的普及,对固晶机设备在性能方面提出了更高的需求。
SiP主流的封装结构形式,SiP主流的封装形式有可为多芯片模块(Multi-chipModule;MCM)的平面式2D封装,2D封装中有Stacked Die Module、Substrate Module、FcFBGA/LGA SiP、Hybrid(flip chip+wirebond)SiP-single sided、Hybrid SiP-double sided、eWLB SiP、fcBGA SiP等形式;2.5D封装中有Antenna-in-Package-SiP Laminate eWLB、eWLB-PoP&2.5D SiP等形式;3D结构是将芯片与芯片直接堆叠,可采用引线键合、倒装芯片或二者混合的组装工艺,也可采用硅通孔技术进行互连。
近年来,SiP (System in Package, 系统级封装)主要应用于消费电子、无线通信、汽车电子等领域,特别是以苹果、华为、荣耀、小米为表示的科技巨头的驱动下,SiP技术得到迅速的发展。随着SiP模块成本的降低,且制造工艺效率和成熟度的提高,这种封装方法的应用领域逐渐扩展到工业控制、智能汽车、云计算、医疗电子等许多新兴领域。从封装本身的角度看,SiP可以有效地缩小芯片系统的体积,提升产品性能,尤其适合消费类电子产品的应用,越来越被市场所重视,也成为未来热门的封装技术发展方向之一。SiP 封装技术采取多种裸芯片或模块进行排列组装。
SMT生产工艺挑战:元件小型化,Chip元件逐步淘汰,随着产品集成化程度越来越高,产品小型化趋势不可避免,因此0201元件在芯片级制造领域受到微型化发展趋势,将被逐步淘汰。Chip元件普及,随着苹果i-watch的面世,SIP的空间设计受到挑战,伴随苹果,三星等移动设备的高标要求,01005 chip元件开始普遍应用在芯片级制造领域。Chip元件开始推广,SIP工艺的发展,要求元件板身必须小型化,随着集成的功能越来越多,PCB承载的功能将逐步转移到SIP芯片上,这就要求SIP在满足功能的前提下,还能降尺寸控制在合理范围,由此催生出0201元件的推广与应用。从某种程度上说:SIP=SOC+其他(未能被集成到SOC中的芯片和组件)。浙江模组封装
SiP系统级封装为设备提供了更高的性能和更低的能耗,使电子产品在紧凑设计的同时仍能实现突出的功能。广东陶瓷封装技术
SiP系统级封装需求主要包括以下几个方面:1、精度:先进封装对于精度的要求非常高,因为封装中的芯片和其他器件的尺寸越来越小,而封装密度却越来越大。因此,固晶设备需要具备高精度的定位和控制能力,以确保每个芯片都能准确地放置在预定的位置上。2、速度:先进封装的生产效率对于封装成本和产品竞争力有着重要影响。因此,固晶设备需要具备高速度的生产能力,以提高生产效率并降低成本。3、良品率:先进封装的制造过程中,任何一个环节的失误都可能导致整个封装的失败。因此,固晶设备需要具备高良品率的生产能力,以确保封装的质量和可靠性。广东陶瓷封装技术
由于物联网“智慧”设备的快速发展,业界对能够在更小的封装内实现更多功能的系统级封装 (SiP) 器件的需求高涨,这种需求将微型化趋势推向了更高的层次:使用更小的元件和更高的密度来进行组装。 无源元件尺寸已从 01005 ( 0.4 mm× 0.2 mm) 缩小到 008004( 0.25 mm×0.125 mm) ,细间距锡膏印刷对 SiP 的组装来说变得越来越有挑战性。 对使用不同助焊剂和不同颗粒尺寸锡粉的 3 种锡膏样本进行了研究; 同时通过比较使用平台和真空的板支撑系统,试验了是否可以单独使用平台支撑来获得一致性较好的印刷工艺;并比较了激光切割和电铸钢网在不同开孔尺寸下的印刷结果。在当前...