超声微泡相关图片
  • 全氟烷超声微泡核酸,超声微泡
  • 全氟烷超声微泡核酸,超声微泡
  • 全氟烷超声微泡核酸,超声微泡
超声微泡基本参数
  • 品牌
  • 星叶生物
  • 型号
  • 定制
  • 是否定制
超声微泡企业商机

超声微泡有效地产生反向散射超声,增强对比度,以便将目标部位(血管)与周围组织区分开来。它还可以比较大限度地减少噪声和背景信号。超声微泡的声学特性产生成像信号,由美国成像仪器检测。使用超声微泡进行诊断的频率范围约为2-18 MHz。共振频率与超声微泡的尺寸成反比,并受超声微泡表面配方特性的影响。超声微泡对波传播幅度的增加具有非线性响应,从而产生谐波频率分量,从而提高了美国成像的空间分辨率。超声微泡被用作造影剂,因为固体和液体颗粒无法提供超声微泡给出的后向散射信号。另一种实时无创成像技术是光声(PA)成像,它需要激光源照射、光敏剂和超声换能器来收集产生的声信号。PA成像是基于热弹性膨胀和造影剂存在下光子到超声转换的光能吸收。PA与超声波相结合,能够以高空间分辨率显示深部组织。Meng等人进行了一项简单的研究,利用超声波将mb转化为纳米颗粒,目的是在小鼠模型的PA成像过程中获得无背景的强信号。超声微泡的广泛应用使研究人员能够调整靶向效率和响应性,例如超声/光热/pH/光触发药物释放。超声联合纳米微泡进行核酸输送。全氟烷超声微泡核酸

全氟烷超声微泡核酸,超声微泡

**组织中的生物学改变对纳米微泡的效率起着至关重要的作用。正常组织微血管内皮间隙致密,内皮细胞结构完整,而实体瘤组织新生血管内皮孔在380 ~ 780 nm之间,内皮细胞结构完整性较差。因此,与正常组织相比,一定大小的分子或颗粒更倾向于在**组织中聚集。这种现象被称为EPR (enhanced permeability and retention)效应,被认为是完成**组织被动靶向***的机制。在临床前试验中,与传统化疗相比,基于EPR的药物或基因递送靶向系统在***功效方面取得了显着进展。在过去的几年里,各种基于EPR效应的纳米材料已经被应用,其中纳米级纳米气泡的大小可以根据**血管中孔隙的大小而改变。鉴于不同类型**的内皮细胞中存在不同的间隙大小,因此必须根据**的类别建立合适尺寸的纳米材料。同样,纳米颗粒到达血液循环系统时,生物屏障所产生的阻碍也需要高度重视。因此,考虑到这些挑战,为了更好地利用纳米材料递送中的EPR效应,设计了各种处理方法。基于EPR的纳米颗粒靶向策略主要致力于调整药物或载体的大小和/或利用配体连接涉及EPR效应的分子。肺靶向超声微泡研究超声微泡造影剂的外壳是有脂质组成的。

全氟烷超声微泡核酸,超声微泡

微泡表面选择合适的偶联化学和修饰顺序取决于配体的类型。一个重要的考虑因素是配体的大小及其对生物利用度的影响。小的亲水分子,如代谢物和肽,可以直接偶联到聚合物间隔物上,而不会***影响聚合物动力学。相比之下,大的蛋白质配体,如抗体,由于剪切应力和涉及微泡分散的有机溶剂,容易变性。因此,抗体(~120 kDa)通常通过生物素-亲和素连接连接到预形成的微泡表面。所得到的复合物更像一个刚性支架,而不是一个自由的聚合物链(50),配体与聚合物刷(~5 kDa)被大块的亲和素分子(~60 kDa)很好地分离。

***斑块的检测对于*******的发病率和死亡率可能更为重要。由于潜在的炎症,活性斑块区域的内皮细胞被***马托雷过程;因此,内皮细胞中这些位点上的VCAM-1和选择素应该被上调,用抗VCAM-1靶向微泡和抗p-选择素靶向或抗e -选择素靶向泡进行分子成像可能是有用的。在这种情况下,可用的动物模型是高胆固醇饮食的apoE⫺/⫺小鼠。**近,研究人员利用抗vcam -1抗体修饰的生物素化微泡成功靶向了这类小鼠主动脉弓内的斑块。由于大多数单克隆抗体本身可能无法在快速流动条件下靶向微泡,因此在同一链霉亲和素修饰的微泡上结合快速结合的生物素化SialylLewisx聚合物和紧密结合的生物素化抗vcam -1抗体可能会有所帮助。事实上,在高胆固醇饮食的apoE-/-小鼠中,这些配体组合的微泡靶向成功地在动脉血管区域积累,但在对照组小鼠中却没有,尽管有高剪切流量。超声微泡有效地产生反向散射超声,增强对比度,以便将目标部位(血管)与周围组织区分开来。

全氟烷超声微泡核酸,超声微泡

微泡的惯性空化和破坏可产生强大的机械应力,增强周围组织的渗透性,并可进一步增加药物从血液外渗到细胞质或间质中。超声造影剂是高回声的微泡,具有许多独特的性质。微泡基本上可以提高常规超声成像对微循环的灵敏度。微泡响应入射超声脉冲的共振导致非线性谐波发射,在微泡特异性成像中作为微泡的特征。高频超声的稳定空化也可以温和地增加组织的通透性,即使在高的情况下也不会造成任何损害声压。微泡可以携带药物,释放药物超声介导的微泡破坏同时增强血管通透性,增加药物在组织中的沉积。可以将各种靶向配体偶联到微泡表面,实现配体定向和位点特异性积累,用于靶向成像。通过将靶向指定表面标记物的配体附着在载药微泡的外部,可以实现更特异性的药物递送。北京载药超声微泡

微泡表面的电荷和配体可以用来增加靶向的特异性。全氟烷超声微泡核酸

“主动靶向”一词指的是用特定生物标志物标记的超声微泡,允许它们被驱动到特定的目标。由于抗体-抗原或配体-受体相互作用的特异性,这种策略可以提高MNB递送的效率。可以使用各种配体来提高载药超声微泡对***斑块的靶向效率和特异性结合,如碳水化合物、蛋白质、核酸和多肽。作为配体的抗体由于其特异性而引起了研究人员的兴趣,但需要高成本。因此,需要进一步研究主动靶向超声微泡的表面改性和开发,以降低成本。当超声微泡粒度均匀且不发生聚集时,可以获得良好的超声微泡分布。在颗粒表面添加PEG增加了分布稳定性,从而促进了循环时间,避免了吞噬作用。研究表明,在生理条件下,添加聚乙二醇(4-5%)可提高填充C3F8的脂基mb的寿命和稳定性。用聚乙二醇和pluronic改性并加入互穿交联N,N-二乙基丙烯酰胺(NNDEA)和N,N-双(丙烯基)半胺(BAC)也可以提高交联pluronic-脂-氟碳纳米微泡 (CL-PEG-纳米微泡)的稳定性。而且,使用pluronic来增加磷脂膜的稳定性,还可以减小形成的颗粒的尺寸。CL-PEG-纳米微泡作为造影剂,可以增强回声信号,增加在病变部位的积累和保留能力。因此,CL-PEG-纳米微泡为***的靶向分子成像和进一步发展提供了创新。全氟烷超声微泡核酸

与超声微泡相关的**
信息来源于互联网 本站不为信息真实性负责